留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气体放电的高超声速激波结构显示技术

沙心国 文帅 袁明论 卢洪波 纪锋

沙心国, 文帅, 袁明论, 等. 基于气体放电的高超声速激波结构显示技术[J]. 实验流体力学, 2018, 32(3): 87-93. doi: 10.11729/syltlx20170106
引用本文: 沙心国, 文帅, 袁明论, 等. 基于气体放电的高超声速激波结构显示技术[J]. 实验流体力学, 2018, 32(3): 87-93. doi: 10.11729/syltlx20170106
Sha Xinguo, Wen Shuai, Yuan Minglun, et al. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. doi: 10.11729/syltlx20170106
Citation: Sha Xinguo, Wen Shuai, Yuan Minglun, et al. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. doi: 10.11729/syltlx20170106

基于气体放电的高超声速激波结构显示技术

doi: 10.11729/syltlx20170106
详细信息
    作者简介:

    沙心国(1987-), 男, 河北邢台人, 工程师, 博士研究生。研究方向:高超声速空气动力学及相关测试技术研究。通信地址:北京市7201信箱14分箱。E-mail:shaxg@163.com

    通讯作者:

    卢洪波, E-mail:finlhb_0605@163.com

  • 中图分类号: V211.71

Visualization of shock wave in hypersonic flow using electric discharge

  • 摘要: 基于气体放电辐射强度与气体密度的相关性,在高超声速脉冲风洞FD-20中搭建了气体放电流场显示系统,并分别以平板模型、平板-方块模型和简化进气道模型为试验模型,在来流马赫数Ma=12.16、来流静压p≈106Pa的流场条件下开展气体放电流场显示技术研究。在平板实验中,气体放电方法较准确地观测到了电极之间的平板前缘激波结构,与纹影技术测得激波角相差仅为0.21°。在平板-方块实验中,气体放电方法观测到了2个截面(对称面和远离对称面截面)的激波结构,对称面波系结构与纹影和数值计算所得结果基本一致,远离对称面截面的波系结构与数值计算结果基本一致。在简化进气道实验中,气体放电方法观测到了内流道激波交叉形成的菱形结构,且尺寸与数值计算结果相差较小,约为7.9%。这些实验结果表明,在高超声速脉冲风洞中,采用气体放电方法可以获得清晰准确的激波结构,不仅可进行分截面激波结构观测,还可对被模型遮挡的内部区域激波结构进行显示,而且特别适合用于局部复杂流动波系结构的观测。
  • 图  1  放电系统原理图

    Figure  1.  Schematic of electronic circuit

    图  2  FD-20脉冲风洞

    Figure  2.  FD-20 impulse tunnel

    图  3  平板模型设计图与风洞安装图

    Figure  3.  Plate model

    图  4  平板-方块模型设计图与风洞安装图

    Figure  4.  Plate-cube model

    图  5  平板-方块模型放电截面示意图

    Figure  5.  Discharge locations of the plate-cube model

    图  6  简化进气道模型设计图与风洞安装图

    Figure  6.  Simplified inlet model

    图  7  模型计算域

    Figure  7.  Computational domains

    图  8  模型中心线压力分布

    Figure  8.  Pressure distributions along the models center line

    图  9  平板模型激波结构

    Figure  9.  Shock wave structure around the plate model

    图  10  平板-方块模型激波结构

    Figure  10.  Shock wave structure around the plate-cube model

    图  11  平板-方块模型激波结构(数值模拟计算结果,密度场)

    Figure  11.  Shock wave structure around the plate-cube model(Numerical simulation result, density distribution)

    图  12  简化进气道模型激波结构

    Figure  12.  Shock wave structure around the simplified inlet model

  • [1] 李桂春.风洞试验光学测量方法[M].北京:国防工业出版社, 2008.

    Li G C. Optical instrumentation for wind tunnel testing[M]. Beijing:National Defense Industry Press, 2008.
    [2] 易仕和, 陈植, 何霖, 等. NPLS技术及其在高速飞行器气动研究中的应用[J].实验流体力学, 2014, 28(1):1-11. http://www.syltlx.com/CN/abstract/abstract10444.shtml

    Yi S H, Chen Z, He L, et al. NPLS technique and its applications on aerodynamic investigations of high-speed vehicle[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):1-11. http://www.syltlx.com/CN/abstract/abstract10444.shtml
    [3] 曹春丽.双波长NO-PLIF测量运动激波反射前后温度场的初步研究[D].合肥: 中国科学技术大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2030025

    Cao C L. Preliminary study on temperature measurement for moving shock reflection by two-wavelength NO-PLIF method[D]. Hefei: University of Science and Technology of China, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2030025
    [4] Mccroskey W J, Bogdonoff S M, Mcdougall J G. An experimental model for the sharp flat plate in rarefied hypersonic flow[J]. AIAA Journal, 1966, 4(9):1580-1587. doi: 10.2514/3.55283
    [5] Horstman C C, Kussoy M I. Hypersonic viscous interaction on slender cones[R]. AIAA-68-2, 1968. http://www.researchgate.net/publication/23859060_Hypersonic_viscous_interaction_on_slender_cones
    [6] Fisher S S, Bharathan D. Glow-discharge flow visualization in low-density free jets[J]. Journal of Spacecraft, 1973, 10(10):658-662. doi: 10.2514/3.27786
    [7] Moss J N, Price J M, Chun C H. Hypersonic rarefied flow about a compression corner-DSMC simulation and experiment[R]. AIAA-91-1313, 1991. http://www.researchgate.net/publication/23819094_Hypersonic_rarefied_flow_about_a_compression_corner_-_DSMC_simulation_and_experiment
    [8] Alfyorov V I. Investigation of relaxation processes in flow about models in hypersonic wind tunnels of different types[R]. SPC-93-4044, 1993.
    [9] Yuri Yermak. Investigation of temperature factor influence on control surface effectiveness in hypersonic flows with moderate interaction[R]. SPC-94-4003, 1994.
    [10] Legge H. Experiments on a 70 degree blunted cone in rarefied hypersonic wind tunnel flow[R]. AIAA-95-2140, 1995. http://www.researchgate.net/publication/225013952_Experiments_on_a_70_Degree_Blunted_Cone_in_Rarefied_Hypersonic_Wind_Tunnel_Flow
    [11] Kimura T, Nishio M, Fujita T, et al. Visualization of shock wave by electric discharge[J]. AIAA Journal, 1977, 15(5):611-612. doi: 10.2514/3.60667
    [12] Nishio M, Hagiwara T. Hypersonic flowfield analysis of X-33 model by the electric discharge method[J]. Journal of Spacecraft and Rockets, 1999, 36(6):784-787. doi: 10.2514/2.3513
    [13] Nishio M. Method for visualizing gas temperature distributions around hypersonic vehicles by using electric discharge[J]. AIAA Journal, 1993, 31(6):1170-1171. doi: 10.2514/3.11748
    [14] Nishio M. Methods for visualizing hypersonic shock-wave/boundary-layer interaction using electrical discharges[J]. AIAA Journal, 1996, 34(7):1464-1467. doi: 10.2514/3.13254
    [15] Nishio M. Methods for visualizing streamlines around hypersonic vehicles by using electrical discharges[J]. AIAA Journal, 1992, 30(6):1662-1663. doi: 10.2514/3.11117
    [16] Nishio M, Hagiwara T. Investigation of wake behind hypersonic vehicle by electric discharge method[R]. AIAA-98-1620, 1998. doi: 10.2514/6.1998-1620
    [17] Nishio M, Sezaki S, Nakamura H. Measurements of capsule wake stabilization times in hypersonic gun tunnel[J]. AIAA Journal, 2004, 42(1):56-60. doi: 10.2514/1.9030
    [18] Itoh H, Ishida T, Miyoshi Y, et al. Glow discharge visualization of hypersonic separated flow past cylinder/plate juncture[R]. AIAA-2014-3282, 2014. doi: 10.2514/6.2014-3282
    [19] Jagadeesh G, Sun M, Nagashetty K, et al. Experimental investigations of test gas effects on the hypersonic flow field around large angle blunt cone in shock tunnel[R]. AIAA-2001-0305, 2001.
    [20] 倪刚.辉光放电显示低密度流场[R].航天部七零一所, 1986.
    [21] 李明, 廖俊必, 曾学军, 等.风洞气动热试验外推关联参数初步研究[J].空气动力学学报, 2010, 28(5):513-517. doi: 10.3969/j.issn.0258-1825.2010.05.006

    Li M, Liao J B, Zen X J, et al. Preliminary study on correlative parameters of extrapolation-to-flight of aerodynamic heating from wind tunnels[J]. Acta Aerodynamica Sinica, 2010, 28(5):513-517. doi: 10.3969/j.issn.0258-1825.2010.05.006
    [22] 梁杰, 阎超, 杨彦广, 等.过渡区侧向喷流干扰的并行DSMC数值模拟研究[J].宇航学报, 2011, 32(5):1012-1018. doi: 10.3873/j.issn.1000-1328.2011.05.008

    Liang J, Yan C, Yang Y G, et al. Parallel DSMC simulation of lateral jet interactionin rarefied transitional region[J]. Journal of Astronautics, 2011, 32(5):1012-1018. doi: 10.3873/j.issn.1000-1328.2011.05.008
    [23] Han S G, Wen S, Wu C H, et al. Global heat-flux measurements using phosphor thermography technique in gun tunnel[R]. AIAA-2015-3517, 2015. doi: 10.2514/6.2015-3517
    [24] Sha X G, Yuan M L, Wen S, et al. Glow discharge visualization of shock wave in hypersonic gun tunnel[C]. ASV14-CG-03, The 14th Asian Symposium on Visualization, Beijing, 2017.
    [25] 金志光.超燃冲压发动机高超侧压式进气道设计方法研究[D].南京: 南京航空航天大学, 2006.

    Jin Z G. Design methodology investigation of three-dimensional sidewall compression scramjet inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006.
    [26] Lu H B, Yue L J, Xiao Y B, et al. Interaction of isentropic compression waves with a bow shock[J]. AIAA Jounal, 2013, 51(10):2474-2484. doi: 10.2514/1.J052373
    [27] Lu H B, Yue L J, and Chang X Y. Flow characteristics of hypersonic inlets with different cowl-lip blunting methods[J]. Sci China-Phys Mech Astron, 2014, 57(4):741-752. doi: 10.1007/s11433-013-5285-0
    [28] Yue L J, Lu H B, Xu X, et al. Aerothermal characteristics of bleed slot in hypersonic flows[J]. Sci China-Phys Mech Astron, 2015, 58(10):1-14. doi: 10.1007/s11433-015-5698-z
  • 加载中
图(12)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  107
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-21
  • 修回日期:  2018-05-26
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日