留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间解析PIV的圆柱绕流尾迹特性研究

王勇 郝南松 耿子海 王万波

王勇, 郝南松, 耿子海, 等. 基于时间解析PIV的圆柱绕流尾迹特性研究[J]. 实验流体力学, 2018, 32(1): 64-70. doi: 10.11729/syltlx20170099
引用本文: 王勇, 郝南松, 耿子海, 等. 基于时间解析PIV的圆柱绕流尾迹特性研究[J]. 实验流体力学, 2018, 32(1): 64-70. doi: 10.11729/syltlx20170099
Wang Yong, Hao Nansong, Geng Zihai, et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 64-70. doi: 10.11729/syltlx20170099
Citation: Wang Yong, Hao Nansong, Geng Zihai, et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 64-70. doi: 10.11729/syltlx20170099

基于时间解析PIV的圆柱绕流尾迹特性研究

doi: 10.11729/syltlx20170099
基金项目: 

国家自然科学基金 11602290

振动与噪声控制技术 51334060301

详细信息
    作者简介:

    王勇(1982-), 男, 四川成都人, 博士, 助理研究员。研究方向:气动声学。通信地址:四川省绵阳市中国空气动力研究与发展中心(621000)。E-mail:nudt604@aliyun.com

    通讯作者:

    王勇, E-mail:nudt604@aliyun.com

  • 中图分类号: V211.7

Measurements of circular cylinder's wake using time-resolved PIV

  • 摘要: 采用时间解析PIV(采样频率为1000Hz)在0.55m×0.4m声学风洞中测量了直径D=20mm圆柱后方7.5倍直径、圆柱两侧各3.3倍直径所围成范围内的绕流尾迹在雷诺数Re=2.74×104下的非定常流场。针对PIV获得的速度场数据,进行流场和频谱特性分析,探讨了圆柱绕流尾迹中的平均流场和脉动流场特性,以及旋涡脱落的频率特性。提出了基于速度场之间相关性的相位平均分析方法,系统分析了圆柱上下两侧旋涡交替生成、脱落、发展并耗散的完整演化过程。结果表明:在圆柱后方存在一个低速回流区,其中心0.8D的位置附近是流动结构变化最剧烈的区域;圆柱后方1.9D位置附近是上/下两侧脱落旋涡交汇、耦合的区域,湍流脉动最强;圆柱绕流尾迹中,旋涡脱落频率对应的斯特劳哈尔数稳定在0.2左右;基于速度场之间相关性的相位平均分析方法简单有效,可以准确地识别绕流尾迹中旋涡交替脱落和发展的时空演化过程,在非定常流场测量方面具有普遍推广意义。
  • 图  1  实验设置示意图(俯视图)

    Figure  1.  Sketch of the experimental setup (top view)

    图  2  平均速度场的流线图

    Figure  2.  Mean streamlines

    图  3  平均速度场的归一化涡量图和旋转强度图

    Figure  3.  Normalized mean vorticity field and swirling strength

    图  4  脉动速度场的湍动能和归一化雷诺剪切应力

    Figure  4.  Turbulent kinetic energy and normalized Reynolds shear stress

    图  5  斯特劳哈尔数云图

    Figure  5.  Contours of the Strouhal number

    图  6  速度场之间的相关性分析

    Figure  6.  Cross-correlation analysis of the velocity fields

    图  7  相位平均流线图

    Figure  7.  Phase-averaged streamlines

    图  8  相位平均涡量场

    Figure  8.  Phase-averaged vorticity fields

  • [1] Von Karman T H, Rubach H. On the mechanism of resistance in fluid[J]. Physikalische Zeitschrift, 1912, 13(5):351-358. https://www.sciencedirect.com/science/article/pii/S0017931013001993
    [2] Williamson C H K. Vortex shedding in the cylinder wake[J]. Annu Rev Fluid Mech, 1996, 28:477-539. doi: 10.1146/annurev.fl.28.010196.002401
    [3] Raffel M, Willert C, Wereley S, et al. Particle image velocimetry:a practical guide[M]. 2nd ed. Berlin Heidelberg:Springer-Verlag, 2007.
    [4] Adrian R J. Twenty years of particle image velocimetry[J]. Exp Fluids, 2005, 39(2):159-169. doi: 10.1007/s00348-005-0991-7
    [5] Comte-Bellot G. Hot-wire anemometry[J]. Annu Rev Fluid Mech, 1976, 8:209-231. doi: 10.1146/annurev.fl.08.010176.001233
    [6] Perry A E. Hot-wire anemometry[M]. Oxford:Clarendon Press, 1982.
    [7] Julio S. An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[J]. Experimental Thermal and Fluid Science, 1996, 12(2):221-233. doi: 10.1016/0894-1777(95)00086-0
    [8] Krothapalli A, Shih C, Lourenco L. The near wake of a circular cylinder at 0. 3 < M < 0. 6: a PIV study[R]. AIAA-94-0663, 1994.
    [9] Braza M, Perrin R, Hoarau Y. Turbulence properties in the cylinder wake at high Reynolds numbers[J]. Journal of Fluids and Structures, 2006, (22):757-771. https://www.sciencedirect.com/science/article/pii/S0889974606000429
    [10] Perrin R, Cid E, Cazin S, et al. Phase-averaged measurements of the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and 3C-PIV[J]. Exp Fluids, 2007, (42):93-109. doi: 10.1007/s00348-006-0223-9.pdf
    [11] Sung J, Yoo J Y. Three-dimensional phase averaging of time-resolved PIV measurement data[J]. Meas Sci Technol, 2001, (12):655-662. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/papers/02.10_6_170paper.pdf
    [12] Konstantinidis E, Balabani S, Yianneskis M. Conditional averaging of PIV plane wake data using a cross-correlation approach[J]. Exp Fluids, 2005, (39):38-47. doi: 10.1007/s00348-005-0963-y.pdf
    [13] 张玮, 王元, 徐忠, 等.圆柱绕流涡系演变的DPIV测试[J].空气动力学学报, 2002, 20(4):379-387. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx200204002&dbname=CJFD&dbcode=CJFQ

    Zhang W, Wang Y, Xu Z, et al. Experimental investigation of vortex evlovement around a circular cylinder by digital particle image velocimetry (DPIV)[J]. Acta Aerodynamica Sinca, 2002, 20(4):379-387. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx200204002&dbname=CJFD&dbcode=CJFQ
    [14] 张孝棣, 蒋甲利, 贾元胜, 等.圆柱体绕流尾迹的PIV测量[J].实验流体力学, 2005, 19(2):74-78. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract9391.shtml

    Zhang X D, Jiang J L, Jia Y S, et al. Measurement of cylinder's wake by PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):74-78. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract9391.shtml
    [15] 涂程旭, 王昊利, 林建忠.圆柱绕流的流场特性及涡脱落规律研究[J].中国计量学院学报, 2008, 19(2):98-102. http://www.doc88.com/p-2641200740396.html

    Tu C X, Wang H L, Lin J Z. Experimental research on the flow characteristics and vortex shedding in the flow around a circular cylinder[J]. Journal of China Jiliang University, 2008, 19(2):98-102. http://www.doc88.com/p-2641200740396.html
    [16] Wlezien R W, Way J L. Techniques for the experimental investigation of the near wake of a circular cylinder[J]. AIAA J, 1979, 17(6):563-570. doi: 10.2514/3.61178
    [17] Cantwell B, Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder[J]. J Fluid Mech, 1983, 136:321-374. doi: 10.1017/S0022112083002189
    [18] Perrin R, Braza M, Cid E, et al. Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number[J]. Journal of Fluids and Structures, 2008, 24(8):1313-1325. doi: 10.1016/j.jfluidstructs.2008.08.005
    [19] Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. J Fluid Mech, 1999, 387:353-396. doi: 10.1017/S002211209900467X
    [20] Kravchenko A G, Moin P. Numerical studies of flow over a circular cylinder at Re=3900[J]. Physics of Fluids, 2000, 12(2):403-417. doi: 10.1063/1.870318
    [21] Parnaudeau P, Carlier J, Heitz D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8):261-271. https://www.researchgate.net/profile/Dominique_Heitz/publication/234130406_Experimental_and_numerical_studies_of_the_flow_over_a_circular_cylinder_at_Reynolds_number_3900/links/0912f50a3828de19d1000000/Experimental-and-numerical-studies-of-the-flow-over-a-circular-cylinder-at-Reynolds-number-3900.pdf
    [22] Schlichting H. Boundary layer theory[M]. New York:McFraw-hill Book Company, 1968.
    [23] Franke J, Frank W. Large eddy simulation of the flow past a circular cylinder at Re=3900[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10):1191-1206. doi: 10.1016/S0167-6105(02)00232-5
    [24] Breuer M. A challenging test case for large eddy simulation:high Reynolds number circular cylinder flow[J]. Int J Heat Fluid Flow, 2000, 21:648-654. doi: 10.1016/S0142-727X(00)00056-4
    [25] Dong S, Karniadakis E, Ekmekci A, et al. A combined direct numberical simulation-partical image velocimetry study of the turbulent near wake[J]. Journal of Fluid Mechanics, 2006, 569(12):185-207. https://www.researchgate.net/publication/260249661_A_combined_direct_numerical_simulation-particle_image_velocimetry_study_of_the_turbulent_near_wake
    [26] Fey U, Konig M, Eckelmann H. A new Strouhal-Reynolds number relationship for the circular cylinder in the range 47 < Re < 2×105[J]. Physics of Fluids, 1998, 10(7):1547-1549. doi: 10.1063/1.869675
  • 加载中
图(8)
计量
  • 文章访问数:  681
  • HTML全文浏览量:  433
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-02
  • 修回日期:  2017-11-20
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日