留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沟槽对湍流边界层中展向涡影响的实验研究

王鑫 李山 唐湛棋 姜楠

王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
引用本文: 王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
Wang Xin, Li Shan, Tang Zhanqi, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
Citation: Wang Xin, Li Shan, Tang Zhanqi, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092

沟槽对湍流边界层中展向涡影响的实验研究

doi: 10.11729/syltlx20170092
基金项目: 

国家自然科学基金项目 11332006

国家自然科学基金项目 11732010

国家自然科学基金项目 11572221

国家自然科学基金项目 11502066

详细信息
    作者简介:

    王鑫(1993-), 男, 陕西咸阳人, 硕士研究生。研究方向:实验流体力学。通信地址:天津市天津大学北洋园校区流体力学实验室(300350)。E-mail:wangxinupc@163.com

    通讯作者:

    姜楠, E-mail:nanj@tju.edu.cn

  • 中图分类号: O357.5

An experimental study on riblet-induced spanwise vortices in turbulent boundary layers

  • 摘要: 壁湍流中的相干结构与壁面的高摩擦阻力密切相关,研究壁面纵向微小沟槽对展向涡的影响规律,有助于深入认识沟槽壁面的减阻机理。在自由来流速度控制在0.18m/s的水槽中(Reτ=190),采用高时间分辨率粒子图像测速技术,测量光滑平板和沟槽板(s+=2h+=16.3)湍流边界层,分别获得了15998个瞬时速度矢量场。使用λci识别展向涡,比较了2种壁面流动中不同法向位置处展向涡的数量、平均强度、平均尺度及各尺度展向涡所占的数量比例。结果表明:沟槽使近壁区顺向涡的数量减小,逆向涡的数量增大,并削弱了展向涡的强度;沟槽使近壁区小尺度顺向涡和中尺度逆向涡的比例增加,中尺度顺向涡和大尺度逆向涡的比例减小,使得近壁区顺向涡的尺度差异变小,对近壁区逆向涡的尺度差异几乎无影响;沟槽减小了对数律区小尺度顺向涡的数量比例,并增大了大尺度顺向涡的数量比例,对数律区逆向涡数量比例的变化规律和顺向涡正好相反。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  光滑壁面与沟槽壁面湍流边界层平均速度剖面

    Figure  2.  Mean velocity profiles of TBL over the plate and riblet surfaces

    图  3  相对湍流度沿法向位置y+的分布(实心:沟槽壁面,空心:光滑壁面)

    Figure  3.  Distribution of turbulent intensity in wall-normal direction of TBL

    图  4  2D PIV瞬时速度场中Λci准则检测出的涡结构(蓝色为顺向涡,红色为逆向涡,A-1为A中顺向涡的局部放大图)

    Figure  4.  Example of vortex identification and extraction in an instantaneous two-dimensional PIV velocity field by using Λci (Retrograde spanwise vortices are presented in red and prograde vortices in blue, A-1 is a localized enlargement of prograde vortices in A)

    图  5  顺向涡(NP)和逆向涡(NR)的比例随法向位置y+的变化

    Figure  5.  The proportion of prograde (NP) and retrograde (NR) vortex according to y+

    图  6  顺向涡(ΛP)和逆向涡(ΛR)涡心的平均强度随法向位置y+的变化

    Figure  6.  Average swirling-strength of prograde (ΛP) and retrograde (ΛR) vortex core according to y+

    图  7  涡尺度的示意图

    Figure  7.  An example of realizing vortex diameter from a swirling strength (Λci) map

    图  8  顺向涡(P-D+)和逆向涡(R-D+)的平均直径随法向位置y+的变化

    Figure  8.  The average diameters of prograde (P-D+) and retrograde (R-D+) vortex according to y+

    图  9  顺向涡(P-a/b)和逆向涡(R-a/b)流向尺度和法向尺度的平均比值随法向位置y+的变化

    Figure  9.  The ratio of the average scale of stream to normal of prograde (P-a/b) and retrograde (R-a/b) vortex according to y+

    图  10  各尺度顺向涡的数量比例随y+的变化云图

    Figure  10.  Contours of the proportion of each scale prograde vortex according to y+

    图  11  各尺度逆向涡的数量比例随y+的变化云图

    Figure  11.  Contours of the proportion of each scale retrograde vortex according to y+

    图  12  沟槽与光滑壁面流场中各尺度涡数量比例的差值随法向位置的变化云图

    Figure  12.  The difference of the proportion of each scale spanwise vortex between the flow field over plate and riblet

    表  1  光滑壁面和沟槽壁面湍流边界层的流动参数

    Table  1.   Flow parameters of the TBL over the plate and riblet surfaces

    U/(m·s-1) δ/mm θ/mm u*/(m·s-1) Reθ Reτ Cf DR/%
    Plate 0.180 18.51 1.88 0.0098 355 190 0.0059 -
    Riblet 0.181 21.01 2.15 0.0095 400 208 0.0057 6.68%
    下载: 导出CSV
  • [1] Kang Y D, Choi K S, Chun H H. Direct intervention of hairpin structures for turbulent boundary-layer control[J]. Physics of Fluids, 2008, 20(10):101517. doi: 10.1063/1.3006346
    [2] Kravchenko A G, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(12):3307-3309. doi: 10.1063/1.858692
    [3] 许春晓.壁湍流相干结构和减阻控制机理[J].力学进展, 2015, 45(3):111-140. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxys201503038&dbname=CJFD&dbcode=CJFQ

    Xu C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45(3):111-140. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxys201503038&dbname=CJFD&dbcode=CJFQ
    [4] Walsh M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4):485-486. doi: 10.2514/3.60126
    [5] Walsh M J, Lindemann A M. Optimization and application of riblets for turbulent drag reduction[R]. AIAA-84-0347, 1984.
    [6] Viswanath P R. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences, 2002, 38(6):571-600. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.540.237
    [7] Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow:a review[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2010, 368(1929):4775-4806. doi: 10.1098/rsta.2010.0201
    [8] Bechert D W, Bartenwerfer M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206:105-129. doi: 10.1017/S0022112089002247
    [9] Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87. doi: 10.1017/S0022112096004673
    [10] 封贝贝, 陈大融, 汪家道.亚音速飞行器壁面沟槽减阻研究与应用[J].清华大学学报(自然科学版), 2012, (7):967-972. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201505001.htm

    Feng B B, Chen D R, Wang J D. Riblet surface drag reduction on subsonic aircraft[J]. Journal of Tsinghua University (Science and Technology), 2012, (7):967-972. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201505001.htm
    [11] 王晋军, 兰世隆, 陈光.沟槽面湍流边界层结构实验研究[J].力学学报, 2000, 32(5):621-626. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb200005013&dbname=CJFD&dbcode=CJFQ

    Wang J J, Lan S L, Chen G. Experimental study on the turbulent boundary layer flow over riblets surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2000, 32(5):621-626. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb200005013&dbname=CJFD&dbcode=CJFQ
    [12] 李山, 杨绍琼, 姜楠.沟槽面湍流边界层减阻的TRPIV测量[J].力学学报, 2013, 45(2):183-192. doi: 10.6052/0459-1879-12-262

    Li S, Yang S Q, Jiang N. TRPIV measurement of drag-reduction in the turbulent boundary layer over riblets plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):183-192. doi: 10.6052/0459-1879-12-262
    [13] Sharma A S, McKeon B J. On coherent structure in wall turbulence[J]. Journal of Fluid Mechanics, 2013, 728:196-238. doi: 10.1017/jfm.2013.286
    [14] Jodai Y, Elsinga G E. Experimental observation of hairpin auto-generation events in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2016, 795:611-633. doi: 10.1017/jfm.2016.153
    [15] Perry A E, Chong M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119:173-217. doi: 10.1017/S0022112082001311
    [16] Tomkins C D, Adrian R J. Spanwise structure and scale growth in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2003, 490:37-74. doi: 10.1017/S0022112003005251
    [17] Bacher E V, Smith C R. Turbulent boundary-layer modification by surface riblets[J]. AIAA Journal, 1986, 24(8):1382-1385. doi: 10.2514/3.48695
    [18] Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface[J]. Experiments in Fluids, 2001, 30(2):153-166. doi: 10.1007/s003480000150
    [19] Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255:503-539. doi: 10.1017/S0022112093002575
    [20] Suzuki Y, Kasagi N. Turbulent drag reduction mechanism above a riblet surface[J]. AIAA Journal, 1994, 32(9):1781-1790. doi: 10.2514/3.12174
    [21] Hou J F, Hokmabad B V, Ghaemi S. Three-dimensional measurement of turbulent flow over a riblet surface[J]. Experimental Thermal and Fluid Science, 2017, 85:229-239. doi: 10.1016/j.expthermflusci.2017.03.006
    [22] 黄德斌, 邓先和, 王杨君.沟槽面管道湍流减阻的数值模拟研究[J].水动力学研究与进展, 2005, 20(1):101-105. https://www.wenkuxiazai.com/doc/1454aada6f1aff00bed51e42-3.html

    Huang D B, Deng X H, Wang Y J. Numerical simulation study of turbulent drag reduction over ribelt surfaces of tubes[J]. Journal of Hydrodynamics. 2005, 20(1):101-105. https://www.wenkuxiazai.com/doc/1454aada6f1aff00bed51e42-3.html
    [23] 赵志勇, 董守平, 都亚男.沟槽面对湍流边界层流动特征影响的实验研究[J].实验流体力学, 2004, 18(2):59-64. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract10184.shtml

    Zhao Z Y, Dong S P, Du Y N. An experimental study of turbulent boundary layer over the grooved-surface[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(2):59-64. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract10184.shtml
    [24] Yang S Q, Li S, Tian H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica, 2016, 32(2):284-294. doi: 10.1007/s10409-015-0541-3
    [25] 丛茜, 封云, 任露泉.仿生非光滑沟槽形状对减阻效果的影响[J].水动力学研究与进展:A辑, 2006, 21(2):232-238. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200605001.htm

    Cong Q, Feng Y, Ren L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics:A, 2006, 21(2):232-238. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200605001.htm
    [26] García-Mayoral R, Jiménez J. Drag reduction by riblets[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2011, 369(1940):1412-1427. doi: 10.1098/rsta.2010.0359
    [27] Yang W, Meng H, Sheng J. Dynamics of hairpin vortices generated by a mixing tab in a channel flow[J]. Experiments in Fluids, 2001, 30(6):705-722. doi: 10.1007/s003480000252
    [28] Hambleton W T, Hutchins N, Marusic I. Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 560:53-64. doi: 10.1017/S0022112006000292
    [29] Natrajan V K, Wu Y, Christensen K T. Spatial signatures of retrograde spanwise vortices in wall turbulence[J]. Journal of Fluid Mechanics, 2007, 574:155-167. doi: 10.1017/S0022112006003788
    [30] Wu Y, Christensen K T. Population trends of spanwise vortices in wall turbulence[J]. Journal of Fluid Mechanics, 2006, 568:55-76. doi: 10.1017/S002211200600259X
    [31] Clauser F H. The turbulent boundary layer[J]. Advances in Applied Mechanics, 1956, 4:1-51. doi: 10.1016/S0065-2156(08)70370-3
    [32] 樊星, 姜楠.用平均速度剖面法测量壁湍流摩擦阻力[J].力学与实践, 2005, 27(1):28-30. http://d.wanfangdata.com.cn/Periodical_lxysj200501007.aspx

    Fan X, Jiang N. Skin friction measurement in turbulent boundary layer by mean velocity profile method[J]. Mechanics in Engineering, 2005, 27(1):28-30. http://d.wanfangdata.com.cn/Periodical_lxysj200501007.aspx
    [33] Lee S J, Choi Y S. Decrement of spanwise vortices by a drag-reducing riblet surface[J]. Journal of Turbulence, 2008, 9(23):1-15. https://core.ac.uk/display/51366135
    [34] Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. doi: 10.1063/1.857730
    [35] Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. doi: 10.1017/S002211209900467X
    [36] Christensen K T, Wu Y, Adrian R J, et al. Statistical imprints of structure in wall turbulence[R]. AIAA-2004-1116, 2004.
    [37] Volino R J, Schultz M P, Flack K A. Turbulence structure in rough-and smooth-wall boundary layers[J]. Journal of Fluid Mechanics, 2007, 592:263-293. https://www.usna.edu/NAOE/_files/documents/Faculty/schultz/Volino,%20Schultz,%20Flack%20-%20Turbulence%20Structure%20in%20Rough%20and%20Smooth,%202007.pdf
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  161
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-08-30
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日