留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and simulation study of aeroengine combustor based on CARS technology and UFPV approach

Xiong Moyou Le Jialing Huang Yuan Song Wenyan Yang Shunhua Zheng Zhonghua

熊模友, 乐嘉陵, 黄渊, 等. 采用CARS试验技术与UFPV数值方法研究航空发动机燃烧室[J]. 实验流体力学, 2017, 31(5): 15-23. doi: 10.11729/syltlx20170090
引用本文: 熊模友, 乐嘉陵, 黄渊, 等. 采用CARS试验技术与UFPV数值方法研究航空发动机燃烧室[J]. 实验流体力学, 2017, 31(5): 15-23. doi: 10.11729/syltlx20170090
Xiong Moyou, Le Jialing, Huang Yuan, et al. Experimental and simulation study of aeroengine combustor based on CARS technology and UFPV approach[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 15-23. doi: 10.11729/syltlx20170090
Citation: Xiong Moyou, Le Jialing, Huang Yuan, et al. Experimental and simulation study of aeroengine combustor based on CARS technology and UFPV approach[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 15-23. doi: 10.11729/syltlx20170090

采用CARS试验技术与UFPV数值方法研究航空发动机燃烧室

doi: 10.11729/syltlx20170090
基金项目: 

Supported by NSFC 91641205

详细信息
  • 中图分类号: V231.2

Experimental and simulation study of aeroengine combustor based on CARS technology and UFPV approach

Funds: 

Supported by NSFC 91641205

More Information
    Author Bio:

    Xiong Moyou(1987-), male, born in Qijiang county, Chongqing city, doctoral candidate.Engaged in combustion and flow in aero-engine research.Address:School of Power and Energy, Northwestern Polytechnical University (710072).E-mail:xmy19870102@126.com

    Corresponding author: Xiong Moyou, E-mail:xmy19870102@126.com
  • 摘要: 在自主开发的软件平台上,采用基于URANS的方法计算航空发动机燃烧室的三维两相燃烧流动,考虑了液态燃油从液膜-液滴-燃气-燃烧的完整物理化学过程。其中,颗粒相采用LISA一次破碎模型,KH-RT二次破碎模型和标准的蒸发模型,湍流燃烧模型采用可以考虑非稳态燃烧特性的非稳态火焰面/反应进度变量方法,得到了航空发动机燃烧室中温度、组分浓度和燃油液滴的颗粒直径分布规律。同时,采用CARS光学手段测量燃烧室主燃区的温度分布,并将数值计算结果与光学试验测量值进行比较,数值计算结果和试验值吻合较好,数值计算误差小于7.3%。说明了本文的数值计算方法和UFPV方法在计算航空发动机燃烧室的两相燃烧流动时具有较高的精度。
  • 图  1  航空发动机燃烧室构型

    Figure  1.  Schematic diagram for aeroengine combustor

    图  2  航空发动机燃烧室测量平台照片

    Figure  2.  Photograph of the aeroengine combustor measuring platform

    图  3  模型燃烧室实物照片

    Figure  3.  Photograph of model combustor

    图  4  CARS测量集成系统

    Figure  4.  Picture of CARS test integration system for aeroengine combustor

    图  5  航空发动机主燃孔附近CARS测温位置示意图

    Figure  5.  Schematic diagram for CARS measurement location of temperature in the zone near the primary air jet holes

    图  6  燃烧室网格划分

    Figure  6.  Grid of combustor

    图  7  最大温度随当量标量耗散率变化的S型曲线

    Figure  7.  S curve of the maximum temperature with the variation of the stoichiometric scalar dissipation rate

    图  8  当量标量耗散率为100s-1时,温度在混合分数空间的分布

    Figure  8.  Distribution of temperature T in the mixture fraction space when the stoichiometric scalar dissipation rate is 100s-1

    图  9  燃料质量分数为0.015的等值面图

    Figure  9.  Iso-surface of liquid particle axis velocity is 5m/s (red surface) and -1m/s (blue surface) respectively

    图  10  燃料质量分数为0.015的等值面图

    Figure  10.  Iso-surface distribution of fuel mass fraction of 0.015

    图  11  燃烧室速度及燃油液滴直径分布

    Figure  11.  Velocity and diameter of fuel droplets in combustor

    图  12  燃烧室混合分数及燃油液滴直径分布

    Figure  12.  Mixture fraction and diameter of fuel droplets in combustor

    图  13  燃烧室温度云图

    Figure  13.  Contour of temperature in combustor

    图  14  燃烧室反应进度变量云图

    Figure  14.  Contour of progress variable in combustor

    图  15  燃烧室一氧化碳云图

    Figure  15.  Contour of mass fraction of CO in combustor

    表  1  Boundary inlet condition of combustor

    Table  1.   Boundary inlet condition of combustor

    Flow rate of fuel/(kg·s-1) Flow rate of air/(kg·s-1) Excess air coefficient Inlet total temperature/K Inlet total pressure/MPa
    0.0115 0.440 2.6 861 0.55
    下载: 导出CSV

    表  2  Temperature of the CARS technology measurements and numerical simulation

    Table  2.   Temperature of the CARS technology measurements and numerical simulation

    Position CARS measured value/K Simulation value/K Error/%
    1 2350 2263 -3.70
    2 2300 2281 -0.08
    3 1915 1951 1.88
    4 1896 1936 2.11
    5 1870 1772 -5.24
    6 1907 1768 -7.29
    7 2235 2258 1.03
    8 2188 2255 3.00
    9 2135 2168 1.54
    10 2100 2165 3.10
    下载: 导出CSV
  • [1] Jin J, Liu D H. Recent advances in turbulent two-phase combustion models[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(3):304-309.
    [2] Legier J P, Poinsot T, Veynante D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[C]//Center for Turbulence Research Proceedings of the Summer Program, 2000.
    [3] Selle L, Lartigue G, Poinsot T, et al. Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry[C]//Center for Turbulence Research Proceedings of the Summer Program, 2002.
    [4] Yang J H, Liu F Q, Mao Y H, et al. A partially premixed combustion model and its validation with the turbulent bunsen flame calulation[J]. Journal of Engineering Thermophysics, 2012, 33(10):1793-1797.
    [5] Xiao H H, Shen X B, Sun J H. Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct[J]. International Journal of Hydrogen Energy, 2012, 37(15):11466-11473. doi: 10.1016/j.ijhydene.2012.05.006
    [6] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3):319-339. doi: 10.1016/0360-1285(84)90114-X
    [7] Peters N. An asymptotic analysis of nitric oxide formation in turbulent diffusion flames[J]. Combust Sci and Tech, 2007, 19(1-2):39-49.
    [8] Pierce C D. Progress-variable approach for large-eddy simulation of turbulent combustion[D]. Stanford: Stanford University, 2001.
    [9] Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, (504):73-97.
    [10] Pitsch H, Ihme M, Nevada R. An unsteady/flamelet progress variable method for LES of nonpremixed turbulent combustion[R]. AIAA-2005-557, 2005.
    [11] Sadasivuni S K. LES modelling of non-premixed and partially premixed turbulent flames[D]. Loughborough: Loughborough University, 2009.
    [12] Ihme M, See Y C. Prediction of autoignition in a lifted methane/air flame using an UFPV model[J]. Combustion and Flame, 2010, 157(10):1850-1862. doi: 10.1016/j.combustflame.2010.07.015
    [13] Bajaj C, Ameen M, Abraham J. Evaluation of an unsteady flamelet progress variable model for autoignition and flame lift-off in diesel jets[J]. Combustion Science and Technology, 2013, 185(3):454-472.[WX)] [WX(4.5mm, 75.5mm] doi: 10.1080/00102202.2012.726667
    [14] Van Oijen J, De Goey L. Modelling of premixed counterflow flames using the flamelet-generated manifold method[J]. Combustion Theory and Modelling, 2002, 6(3):463-478. doi: 10.1088/1364-7830/6/3/305
    [15] Ribert G, Gicquel O, Darabiha N, et al. Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames[J]. Combustion and Flame, 2006, 146(4):649-654. doi: 10.1016/j.combustflame.2006.07.002
    [16] Naud B, Novella R, Pastor J M, et al. RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable apporach with presumed PDF[J]. Combustion and Flame, 2014, 162(4):893-906.
    [17] Xing J W. Applications of chemical equilibrium and flamelet model for the numerical simulation of scramjet[D]. Mianyang: China Aerodynamics Research and Development Center, 2007.
    [18] Fung M C, Inthanvong K, Yang W, et al. Experimental and numerical modelling of nasal spray atomisation[C]. Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, 2012.
    [19] Senecal P K, Schmidt D P. Modeling high-speed viscous liquid sheet atomization[J]. International Journal of Multiphase Flow, 1999, 25(6-7):1073-1097. doi: 10.1016/S0301-9322(99)00057-9
    [20] Reitz R D. Modeling atomization processes in high pressure vaporizing sprays[J]. Atomization Spray Technoology, 1987, 3(309):309-337.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  101
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-09-28
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日