留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲外锥乘波前体进气道低马赫数段实验研究

卫锋 周正 李莉 贺旭照

卫锋, 周正, 李莉, 等. 曲外锥乘波前体进气道低马赫数段实验研究[J]. 实验流体力学, 2017, 31(6): 1-7. doi: 10.11729/syltlx20170049
引用本文: 卫锋, 周正, 李莉, 等. 曲外锥乘波前体进气道低马赫数段实验研究[J]. 实验流体力学, 2017, 31(6): 1-7. doi: 10.11729/syltlx20170049
Wei Feng, Zhou Zheng, Li Li, et al. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. doi: 10.11729/syltlx20170049
Citation: Wei Feng, Zhou Zheng, Li Li, et al. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. doi: 10.11729/syltlx20170049

曲外锥乘波前体进气道低马赫数段实验研究

doi: 10.11729/syltlx20170049
基金项目: 

国家自然科学基金 51376192

详细信息
    作者简介:

    卫锋(1987-), 男, 四川绵阳人, 硕士, 助理研究员。研究方向:高超声速气动布局及内外流一体化技术。通信地址:四川省绵阳市二环路南段6号19信箱01分箱(621000)。E-mail:wf_nudt@hotmail.com

    通讯作者:

    贺旭照, E-mail: hexuzhao@sina.com

  • 中图分类号: V235.213

Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range

  • 摘要: 为了研究新型一体化曲外锥乘波前体进气道在低马赫数端的自起动、抗反压特性及侧滑对性能的影响,基于几何约束及钝度修型的实用化风洞实验模型,采用进气道节流系统,在来流马赫数3.0、3.5和4.0,迎角-4°~6°范围内,不同堵锥位置状态下获得了一体化曲外锥乘波前体进气道的表面压力分布及流场高清纹影。实验结果表明,实验模型在来流马赫数3.5和4.0时具备自起动能力;在0°迎角,来流马赫数3.5和4.0,最大抗反压能力分别约为24和33倍来流压力;侧滑角对一体化曲外锥乘波前体进气道的流量捕获和流动压缩性能影响相对较弱。曲外锥乘波前体进气道具有同超燃冲压燃烧室、高超声速飞行器进行一体化设计的特性。
  • 图  1  实验模型三维视图

    Figure  1.  Three dimensional view of the geometrically constrained experimental model

    图  2  实验系统示意图

    Figure  2.  Schematic map of the experimental systems

    图  3  CCWI前体进气道在风洞中的实物照片

    Figure  3.  Photograph of the fully assembled CCWI model in the SITWT's test section

    图  4  CCWI实验模型三视图和测点分布

    Figure  4.  Three views of the CCWI experimental model

    图  5  实验模型机体侧对称面压力分布(Ma=4.0, 迎角0°)

    Figure  5.  Static pressure distributions on bodyside's symmetric wall at different throttling positions at Ma=4.0, AOA= 0°

    图  6  Ma=4.0、迎角0°时,不起动和自起动纹影照片和动态压力测点信号图

    Figure  6.  Unstart and restart schlieren maps at Ma=4.0, AOA= 0° and dynamic pressure distribution during CCWI's restarting

    图  7  Ma=3.5、迎角0°时,不起动和自起动纹影照片和动态压力测点信号图

    Figure  7.  Unstart and restart schlieren maps at Ma=3.5, AOA=0° and dynamic pressure distribution during CCWI's restarting

    图  8  Ma=3.0、迎角0°时,不起动纹影照片和动态压力测点信号图

    Figure  8.  Unstart schlieren maps and dynamic pressure distribution at Ma=3.0, AOA =0°

    图  9  起动和不起动状态的动态压力信号功率谱分布图

    Figure  9.  Spectra of dynamic pressure signals during start, unstart at Ma= 4.0 and unstart at Ma=3.0, AOA= 0°

    图  10  起动不起动状态的流量系数

    Figure  10.  Mass flux ratio under start and unstart conditions

    图  11  机体侧对称面压力分布(Ma=4.0、迎角6°)

    Figure  11.  Static pressure distribution on bodyside's symmetric wall at Ma=4.0, AOA= 6° as throttling cone moving forward

    图  12  不同来流马赫数和迎角下的最大抗反压能力

    Figure  12.  Maximum backpressure ratio at different Ma and AOA

    图  13  不同侧滑角条件下的对称面压力分布

    Figure  13.  Static pressure distribution on symmetric wall at different sideslip angles at Ma=4.0, AOA=0°

    图  14  不同侧滑角条件下的隔离段出口皮托压分布

    Figure  14.  Pitot pressure distributions in isolated exit plane at different sideslip angles at Ma=4.0, AOA=0°

    表  1  风洞自由来流条件

    Table  1.   Wind tunnel freestream flow conditions

    Ma p0/MPa T0/K Re
    4.03 0.63 288 3.09 × 107
    3.53 0.54 288 3.37× 107
    3.01 0.36 288 2.91× 107
    下载: 导出CSV
  • [1] Richard M, Scott M. X-51 development:a chief engineer's perspective[C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011.
    [2] Kuchemann D. The aerodynamic design of aircraft[M]. Oxford:Pergamon Press, 1978:448-510.
    [3] Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. Published by American Institute of Aeronautics and Astronautics Inc, 1994:32-33.
    [4] Haney J W, Beaulieu W D. Wave rider inlet integration issues[R]. AIAA-1994-0383, 1994.
    [5] Vijay S, Andrew G, Mark S. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2):308-316. https://core.ac.uk/display/21977620
    [6] Thomas M B, Norbert C B. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1):30-36. doi: 10.2514/3.26994
    [7] Frederick S B, Robert A B, Tam C J. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999. doi: 10.2514/6.1999-4974
    [8] Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. doi: 10.2514/2.5459
    [9] O'Neill M K, Lewis M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1123. doi: 10.2514/3.56866
    [10] Takashima N, Lewis M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-96-2551, 1996. doi: 10.2514/6.1996-2551
    [11] O'Brien T F, Lewis M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. doi: 10.2514/2.2880
    [12] Sobieczky H, Dougherty F C, Jones K D. Hypersonic waverider design from given shock waves[C]//Proceedings of the First International Hypersonic Wave rider Symposium, University of Maryland, College Park, MD, 1990. https://www.researchgate.net/publication/225015124_Hypersonic_Waverider_Design_from_Given_Shock_Waves
    [13] Ryan P S, Mark J L. Design of an engine-airframe integrated hypersonic missile within fixed box constraints[R]. AIAA-99-0509, 1999. doi: 10.2514/6.1999-509
    [14] You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009. doi: 10.2514/6.2009-7421
    [15] Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014. doi: 10.2514/6.2014-3229
    [16] 贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进技术, 2012, 33(4):510-515. http://www.oalib.com/paper/5111622

    He X Z, Zhou Z, Ni H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. http://www.oalib.com/paper/5111622
    [17] He X Z, Le J L, Zhou Z, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods and experimental study[R]. AIAA-2012-5810, 2012. doi: 10.2514/6.2012-5810?mi=8fbwx6&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=xuzhao%2C+h
    [18] 周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能实验研究[J].推进技术, 2016, 37(8):1455-1460. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201608007&dbname=CJFD&dbcode=CJFQ

    Zhou Z, He X Z, Wei F, et al. Experimental studies of osculating inward turning cone waverider forebody inlet(OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201608007&dbname=CJFD&dbcode=CJFQ
    [19] 贺旭照, 乐嘉陵.曲外锥乘波体进气道实用构型设计和性能分析[J].航空学报, 2016, DOI: 10.7527/S1000-6893.2016.0289.

    He X Z, Le J L. Design and performances analysis of a practical curved cone waverider inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, DOI: 10.7527/S1000-6893.2016.0289.
    [20] He X Z, Le J L, Wu Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009. doi: 10.2514/6.2009-7423
    [21] 贺旭照, 倪鸿礼.密切曲面锥乘波体-设计方法和性能分析[J].力学学报, 2011, 43(6):1077-1082. doi: 10.6052/0459-1879-2011-6-lxxb2010-502

    He X Z, Ni H L. Osculating curved cone(OCC) waverider:Design method and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. doi: 10.6052/0459-1879-2011-6-lxxb2010-502
    [22] Trent T, David Van W. Performance analysis of hypersonic shape changing inlets derived from morphing streamline traced flowpaths[R]. AIAA-2008-2635, 2008. doi: 10.2514/6.2008-2635
    [23] http://www.cardc.cn:88/html/Facility/f2/65.html
    [24] He X Z, Zhao H Y, Le J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamic Sinica, 2006, 24(4):450-453. https://www.researchgate.net/publication/293761189_Application_of_wall_function_boundary_condition_considering_heat_transfer_and_compressibility
    [25] Simon T, Philippe D, Sébastien D. Experimental study of supersonic inlet buzz[J]. AIAA Journal, 2006, 44(10):2354-2365. doi: 10.2514/1.20451
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  114
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-25
  • 修回日期:  2017-09-07
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日