留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下壁面剪应力传感器温控标定装置研究

夏云峰 郝思禹 徐华 蔡喆伟 张世钊 闫杰超

夏云峰, 郝思禹, 徐华, 等. 水下壁面剪应力传感器温控标定装置研究[J]. 实验流体力学, 2017, 31(3): 72-77. doi: 10.11729/syltlx20170025
引用本文: 夏云峰, 郝思禹, 徐华, 等. 水下壁面剪应力传感器温控标定装置研究[J]. 实验流体力学, 2017, 31(3): 72-77. doi: 10.11729/syltlx20170025
Xia Yunfeng, Hao Siyu, Xu Hua, et al. Research on the calibration device with temperature control for underwater wall shear stress sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 72-77. doi: 10.11729/syltlx20170025
Citation: Xia Yunfeng, Hao Siyu, Xu Hua, et al. Research on the calibration device with temperature control for underwater wall shear stress sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 72-77. doi: 10.11729/syltlx20170025

水下壁面剪应力传感器温控标定装置研究

doi: 10.11729/syltlx20170025
基金项目: 

国家重大科学仪器设备开发专项项目 2013YQ040911

国家自然科学基金项目 51309158

详细信息
    作者简介:

    夏云峰(1965-), 男, 安徽芜湖人, 博士, 教授级高级工程师。研究方向:河口海岸泥沙工程研究。通信地址:江苏省南京市鼓楼区虎踞关34号南京水利科学研究院河流海岸研究所(210024)。E-mail:yfxia@126.com

    通讯作者:

    夏云峰, E-mail:yfxia@126.com

  • 中图分类号: TV131

Research on the calibration device with temperature control for underwater wall shear stress sensor

  • 摘要: 新型壁面剪应力传感器的出现为河口海岸工程中水下壁面剪应力的准确测量提供了新的方式。热式壁面剪应力传感器受环境温度影响显著,相关传感器的研究与应用需要准确的标定。本文基于宽扁管道内壁面切应力与沿程压力梯度的关系,研发了一种具有温控功能的水下壁面剪应力传感器静态标定装置,可实现不同水温条件下的壁面剪应力输出。该标定装置可提供的最大水温在35℃。最后通过对MEMS柔性热膜式壁面剪应力传感器在不同水温条件下的静态标定实验,确定了不同水温条件下传感器的标定系数,结果表明标定系数B与水温呈线性相关。
  • 图  1  典型的壁面剪应力传感器标定用微型宽扁管道示意图[13]

    Figure  1.  Typical micro rectangular duct for wall shear stress sensor calibration[13]

    图  2  标定段宽扁管道示意图

    Figure  2.  Diagrammatic sketch of the calibration section

    图  3  用于连接水管和标定段的平滑过渡段

    Figure  3.  Transition section for connecting pipe and calibration section

    图  4  标定段壁面剪应力沿程分布

    Figure  4.  Distribution of wall shear stress along the calibration section

    图  5  水下壁面剪应力传感器温控标定装置平面布置图

    Figure  5.  Layout of the calibration device with temperature control for underwater wall shear stress sensor

    图  6  加热浮箱照片

    Figure  6.  Photo of floating heater

    图  7  MEMS柔性热膜式壁面剪应力传感器

    Figure  7.  MEMS flexible hot-film wall shear stress sensor

    图  8  安装于标定段的柔性热膜式壁面剪应力传感器

    Figure  8.  Wall shear stress sensor installed on the calibration section

    图  9  编号1的壁面剪应力传感器在不同水温下的标定曲线

    Figure  9.  Calibration curves of #1 sensor at different water temperatures

    图  10  编号2的壁面剪应力传感器在不同水温下的标定曲线

    Figure  10.  Calibration curves of #2 sensor at different water temperatures

    图  11  标定系数B与水温Ta的变化趋势

    Figure  11.  Variation trend of calibration coefficient B and water temperature Ta

    表  1  标定系数以及标定公式的确定系数

    Table  1.   Parameters of calibration equations and R-Square

  • [1] Xu H, Xia Y F, Ma B H, et al. Research on measurement of bed shear stress under wave-current interaction[J]. China Ocean Engineering, 2015, 29: 589-598. doi: 10.1007/s13344-015-0041-z
    [2] 吕海峰, 姜澄宇, 邓进军, 等.用于壁面切应力测量的微传感器设计[J].机械工程学报, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm

    Lyu H F, Jiang C Y, Deng J J, et al. Design of micro sensor for wall shear stress measurement[J]. Journal of Mechanical Engineering, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm
    [3] Ma B H, Ma C Y. A MEMS surface fence for wall shear stress measurement with high sensitivity[J]. Microsystem Technologies, 2016, 22(2): 239-246. doi: 10.1007/s00542-015-2450-6
    [4] Savelsberg R, Schiffer M, Obermeier E, et al. Calibration and use of a MEMS surface fence for wall shear stress measurements in turbulent flows[J]. Experiments in Fluids, 2012, 53(2): 489-498. doi: 10.1007/s00348-012-1304-6
    [5] 马炳和, 赵建国, 邓进军, 等.全柔性热膜微传感器阵列制造工艺及性能优化[J].光学精密工程, 2009, 17(8): 1971-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200908032.htm

    Ma B H, Zhao J G, Deng J J, et al. Fabrication of flexible hot film sensor array and its optimization[J]. Optics and Precision Engineering, 2009, 17(8):1971-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200908032.htm
    [6] Miau J J, Leu T S, Yu J M, et al. MEMS thermal film sensors for unsteady flow measurement[J]. Sensors and Actuators A: Physical, 2015, 235: 1-13. doi: 10.1016/j.sna.2015.09.030
    [7] Pujara N, Liu P L F. Direct measurements of local bed shear stress in the presence of pressure gradients[J]. Experiments in Fluids, 2014, 55(7): 1-13. doi: 10.1007/s00348-014-1767-8
    [8] Huo G, Wang Y G, Yin B S, et al. A new measure for direct measurement of the bed shear stress of wave boundary layer in wave flume[J]. Journal of Hydrodynamics, Ser B, 2007, 19(4): 517-524. doi: 10.1016/S1001-6058(07)60148-6
    [9] Hultmark M, Smits A J. Temperature corrections for constant temperature and constant current hot-wire anemometers[J]. Measurement Science and Technology, 2010, 21(10): 105404. doi: 10.1088/0957-0233/21/10/105404
    [10] Talluru K M, Kulandaivelu V, Hutchins N, et al. A calibration technique to correct sensor drift issues in hot-wire anemometry[J]. Measurement Science and Technology, 2014, 25(10): 105304. doi: 10.1088/0957-0233/25/10/105304
    [11] 马炳和, 王毅, 姜澄宇, 等.柔性热膜剪应力传感器水下测量温度修正[J].实验流体力学, 2014, 28(2): 39-44. doi: 10.11729/syltlx20140006

    Ma B H, Wang Y, Jiang C Y, et al. Temperature correction of flexible thermal shear stress sensor for underwater measurements[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):39-44. doi: 10.11729/syltlx20140006
    [12] Sumer B M, Arnskov M M, Christiansen N, et al. Two-component hot-film probe for measurements of wall shear stress[J]. Experiments in Fluids, 1993, 15(6): 380-384. doi: 10.1007/BF00191776
    [13] Xu Y, Lin Q, Lin G Y, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5): 1023-1030. doi: 10.1109/JMEMS.2005.856644
    [14] 田于逵, 谢华, 黄欢, 等. MEMS壁面剪应力传感器阵列水下标定实验研究[J].实验流体力学, 2015, 29(2): 8-12. http://www.syltlx.com/CN/abstract/abstract10819.shtml

    Tian Y K, Xie H, Huang H, et al. Calibration of MEMS wall shear-stress-sensor array for underwater applications[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):8-12. http://www.syltlx.com/CN/abstract/abstract10819.shtml
    [15] 徐华. 波流作用下床面切应力及挟沙能力研究[D]. 南京: 河海大学, 2016.

    Xu H. Research on bed shear stress and sediment-carrying capacity under wave-current interaction[D]. Najing: Hohai University, 2016.
    [16] Pope S B. Turbulent flows [M]. New York: Cambridge University Press, 2001: 802.
    [17] Marusic I, Mckeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues[J]. Physics of Fluids, 2010, 22(6): 065103.1-24. doi: 10.1063/1.3453711
    [18] Vinuesa R, Schlatter P, Nagib H M. On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows[J]. Journal of Turbulence, 2015, 16(6): 588-606. doi: 10.1080/14685248.2014.996716
    [19] Knight D W, Patel H S. Boundary shear in smooth rectangular ducts[J]. Journal of Hydraulic Engineering, 1985, 111(1): 29-47. doi: 10.1061/(ASCE)0733-9429(1985)111:1(29)
    [20] Rhodes D G, Knight D W. Distribution of shear force on boundary of smooth rectangular duct[J]. Journal of Hydraulic Engineering, 1994, 120(7): 787-807. doi: 10.1061/(ASCE)0733-9429(1994)120:7(787)
    [21] Monty J P. Developments in smooth wall turbulent duct flows[D]. Melbourne: University of Melbourne, 2005.
    [22] Vinuesa R, Bartrons E, Chiu D, et al. New insight into flow development and two dimensionality of turbulent channel flows[J]. Experiments in Fluids, 2014, 55(6): 1-14. https://www.researchgate.net/publication/258517740_New_insight_on_flow_development_and_two-dimensionality_of_turbulent_channel_flows
    [23] Hanratty T J, Campbell J A. Measurement of wall shear stress[M]//Fluid Mechanics Measurements. Washington D C: Taylor & Francis, 1996: 575-648.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  115
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 修回日期:  2017-05-22
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日