留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形断面非线性驰振自激力测量及间接验证中若干重要问题的讨论

朱乐东 庄万律 高广中

朱乐东, 庄万律, 高广中. 矩形断面非线性驰振自激力测量及间接验证中若干重要问题的讨论[J]. 实验流体力学, 2017, 31(3): 16-31. doi: 10.11729/syltlx20170024
引用本文: 朱乐东, 庄万律, 高广中. 矩形断面非线性驰振自激力测量及间接验证中若干重要问题的讨论[J]. 实验流体力学, 2017, 31(3): 16-31. doi: 10.11729/syltlx20170024
Zhu Ledong, Zhuang Wanlyu, Gao Guangzhong. Discussionon several important issues in measurement and indirect verification of nonlinear galloping self-excited forceson rectangular cylinders[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 16-31. doi: 10.11729/syltlx20170024
Citation: Zhu Ledong, Zhuang Wanlyu, Gao Guangzhong. Discussionon several important issues in measurement and indirect verification of nonlinear galloping self-excited forceson rectangular cylinders[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 16-31. doi: 10.11729/syltlx20170024

矩形断面非线性驰振自激力测量及间接验证中若干重要问题的讨论

doi: 10.11729/syltlx20170024
基金项目: 

国家自然科学基金面上项目 51478360

自然科学基金优秀国家重点实验室项目 51323013

详细信息
    作者简介:

    朱乐东(1965-), 男, 浙江宁波人, 博士, 研究员。研究方向:桥梁和建筑结构抗风。通信地址:上海市四平路1239号同济大学桥梁系桥梁馆309室(200092)。E-mail:ledong@tongji.edu.cn

    通讯作者:

    朱乐东, E-mail:Ledong@tongji.edu.cn

  • 中图分类号: TU973.2+13

Discussionon several important issues in measurement and indirect verification of nonlinear galloping self-excited forceson rectangular cylinders

  • 摘要: 采用专门研制的小型动态测力天平,通过弹簧悬挂节段模型内置天平同步测力测振风洞试验,对3:2矩形断面的非线性驰振自激力进行了测量。比较了基于实测自激力重构的节段模型位移响应时程与试验结果,从而对自激力测量精度进行了间接的验证;讨论了在进行这种验证时考虑节段模型系统等效阻尼和刚度参数非线性特性的重要性、非风致附加自激力和风致自激力在动态力中的占比、忽略非风致附加气动阻尼力和惯性力的非线性特性对自激力测量精度的影响等若干重要问题。结果显示:对于3:2矩形断面,非风致附加自激力在测得的总动态力中的占比超过了风致自激力的占比,因此从测得的总动态力中提取自激力时必须扣除非风致附加自激力;非风致附加气动阻尼力和惯性力的非线性对驰振自激力测量精度有一定影响,值得考虑;节段模型系统等效阻尼和刚度参数的非线性对节段模型驰振位移响应的重构精度有明显影响,在验证自激力测量精度时必须加以考虑。
  • 图  1  悬挂于风洞中的同步测力测振节段模型

    Figure  1.  Sectional model suspended in wind tunnel for synchronous measurement of force and dynamic displacement

    图  2  节段模型系统示意图

    Figure  2.  Schematic diagram of sectional model system

    图  3  内置天平安装示意图

    Figure  3.  Schematic diagram of internal installation of force balance

    图  4  简易箱式油阻尼器及安装示意图

    Figure  4.  Schematic diagram of simple box-type oil damper and installation

    图  5  节段模型驰稳态振幅随折减风速变化关系

    Figure  5.  Variation of stable amplitudes of galloping with reduced wind speed

    图  6  驰振位移时程(#C1工况,U*=20.97)

    Figure  6.  Time history of galloping displacement (Case #C1, U*=20.97)

    图  7  驰振移幅值谱(工况#C1,U*=20.97)

    Figure  7.  Amplitude spectra of galloping displacement (Case #C1, U*=20.97)

    图  8  测力段外衣受力示意图

    Figure  8.  Schematic diagram of forces acting on the measured coat

    图  9  无风下自由衰减振动时测力段外衣上每延米动态力(#C1工况)

    Figure  9.  Dynamic forces per meter on the measured coat during free decay vibration at zero wind speed (Case #C1)

    图  10  自由衰减振动时每延米非风致自激力做功时程(#C1工况)

    Figure  10.  Time history of work done by non-wind-induced self-excited force per meter during free decay vibration (Case #C1)

    图  11  多次识别的瞬幅非风致附加气动阻尼比ξa0(at)(#C1工况)

    Figure  11.  Amplitude-dependent non-wind-induced additional aerodynamicdamping ratio identified from several tests (Case #C1)

    图  12  C组各工况瞬幅非风致附加气动阻尼比ξa0(at)结果比较

    Figure  12.  Comparison among amplitude-dependent non-wind-induced additional aerodynamic damping ratios identified from tests of group C cases

    图  13  加速度-非风致自激力相图(#C1工况)

    Figure  13.  Phase diagram of acceleration vs. non-wind-induced self-excited force (Case #C1)

    图  14  多次识别的瞬幅非风致附加气动质量ma0(at)(#C1工况)

    Figure  14.  Amplitude-dependent non-wind-induced additional aerodynamic mass identified from several tests (Case #C1)

    图  15  C组各工况每延米瞬幅非风致附加气动质量ma0(at)结果比较

    Figure  15.  Amplitude-dependent non-wind-induced additional aerodynamic masses identified from tests of Group C cases

    图  16  B组与C组试验瞬幅非风致附加气动阻尼比ξa0(at)比较

    Figure  16.  Amplitude-dependent non-wind-induced additional aerodynamic damping ratios identified from tests of Group B and Group C cases

    图  17  B组与C组试验瞬幅非风致附加气动质量ma0(a)比较

    Figure  17.  Amplitude-dependent non-wind-induced additional aerodynamic masses identified from tests of Group B and Group C cases

    图  18  基于瞬幅非风致附加气动阻尼和质量重构的非风致附加自激力时程与试验结果比较(#C1工况)

    Figure  18.  Comparison of time history of non-wind-induced additional self-excited force reconstructed by using amplitude-dependent non-wind-induced additional aerodynamic damping ratio and mass with the tested one (Case #C1)

    图  19  基于常数非风致附加气动阻尼和质量重构的非风致附加自激力时程与试验结果比较(#C1工况)

    Figure  19.  Comparison of time history of non-wind-induced additional self-excited force reconstructed by using constant non-wind-induced additional aerodynamic damping ratio and mass with the tested one (Case #C1)

    图  20  非风致附加自激力、气动阻尼力和气动惯性力比较(#C1工况)

    Figure  20.  Comparison among non-wind-induced additional self-excited, aerodynamic damping force and aerodynamic inertial forces (Case #C1)

    图  22  基于某次试验识别的瞬时等效频率fe0(at)(#C1工况)

    Figure  22.  Instantaneous frequencies identified from a test of free decay vibration (Case #C1)

    图  21  自由衰减振动位移时程与瞬时等效振幅(#C1工况)

    Figure  21.  Time history of displacement and equivalent amplitude of free decay vibration (Case #C1)

    图  23  基于2次试验识别的瞬幅等效频率fe0(at)(#C1工况)

    Figure  23.  Amplitude-dependent equivalent frequencies identified from two tests of free decay vibration (Case #C1)

    图  24  基于2次试验识别的瞬幅等效频率fe0(at(#C2~#C5工况)

    Figure  24.  Amplitude-dependent equivalent frequencies identified from two tests of free decay vibration (Cases #C2~#C5)

    图  25  基于2次试验识别的瞬幅等效阻尼比ξe0(at)(#C1工况)

    Figure  25.  Amplitude-dependent equivalent damping ratios identified from two tests of free decay vibration (Case #C1)

    图  26  基于2次试验识别的瞬幅等效阻尼比ξe0(at)(#C2~#C5工况)

    Figure  26.  Amplitude-dependent equivalent damping ratios identified from two tests of free decay vibration (Cases #C2~#C5)

    图  27  采用非线性等效系统参数重构的自由衰减振动位移时程与试验结果比较(#C1工况)

    Figure  27.  Comparison of time history of free decay vibration reconstructed by using nonlinear equivalent system parameters with the tested one (Case #C1)

    图  28  采用常数参数重构的自由衰减振动位移时程与试验结果比较(#C1工况)

    Figure  28.  Comparison of time history of free decay vibration reconstructed by using constant parameters with the tested one (Case #C1)

    图  29  驰振自激力时程测力测量结果(#C1工况,U*=20.39)

    Figure  29.  Measured time history of galloping self-excited force (Case #C1, U*=20.39)

    图  30  驰振稳态阶段每延米测力段外衣所受动态力不同成分比较(#C1工况,U*=20.39)

    Figure  30.  Different components of dynamic force on measured coat per meter during stable stage of galloping (Case #C1, U*=20.39)

    图  31  驰振动态气动力功率谱(#C1工况U*=20.39)

    Figure  31.  Spectra of dynamicaerodynamicforce during galloping (Case #C1, U*=20.39)

    图  32  基于瞬幅等效系统参数和瞬幅非风致附加自激力参数重构的驰振位移时程与试验结果对比(#C1工况,U*=20.39)

    Figure  32.  Comparison of galloping time history reconstructed by using amplitude-dependent equivalent system parameters and amplitude-dependent parameters of non-wind-induced additional self-excited force with the tested one (Case #C1, U*=20.39)

    图  33  基于瞬幅和常数非风致附加自激力参数提取的驰振自激力时程比较(#C1工况,U*=20.39)

    Figure  33.  Comparison between time histories of galloping self-excited forces extracted by using amplitude-dependent and constant parameters of non-wind-induced additional self-excited force (Case #C1, U*=20.39)

    图  34  基于瞬幅非线性等效系统参数和常数非风致附加自激力参数重构的位移时程与实测结果对比(#C1工况,U*=20.39)

    Figure  34.  Comparison of galloping time history reconstructed by using amplitude-dependent equivalent system parameters and constant parameters of non-wind-induced additional self-excited force with the tested one (Case #C1, U*=20.39)

    图  35  基于常数等效系统参数和瞬幅风致附加自激力参数重构的驰振位移时程与试验结果对比(#C1工况,U*=20.39)

    Figure  35.  Comparison of galloping time history reconstructed by using constant equivalent system parameters and amplitude-dependent parameters of non-wind-induced additional self-excited force with the tested one (Case #C1, U*=20.39)

    表  1  宽高比3:2矩形断面节段模型风洞试验工况表

    Table  1.   Cases of sectional model wind tunnel test of rectangular cross section with a width-to-height ratio of 3:2

  • [1] Scruton C. Use of wind tunnels in industrial aerodynamic research[R]. AGARD 309, 1960.
    [2] 王继全. 矩形柱体驰振非定常效应研究[D]. 上海: 同济大学, 2011.

    Wang J Q. Unsteady effect on galloping of rectangular prisms[D]. Shanghai: Tongji University, 2011.
    [3] 周帅, 张志田, 陈政清, 等.大长细比钝体构件涡激共振与驰振的耦合研究[J].工程力学, 2012, 29(1): 176-186. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201201028.htm

    Zhou S, Zhang Z T, Chen Z Q, et al. Research on coupling of the vortex-excited resonance and galloping of the bluff body with large slenderness ratio[J]. Engineering Mechanics, 2012, 29(1):176-786. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201201028.htm
    [4] Theodorsen T. General theory of aerodynamic instability and the mechamism of flutter[R]. NACA 496, 1935.
    [5] Bleich F. Dynamic instability of truss-stiffened suspension bridges under wind action[J]. Transactions of ASCE, 1949, 114: 1177-1222. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=291928
    [6] Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics-ASCE, 1971, 97(6): 1717-1737. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=17902
    [7] Novak M. Galloping oscillations of prismatic bodies[J]. Journal of the Engineering Mechanics Division, ASCE, 1969, 95(EM1): 115-142. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0127419
    [8] Mannini C, Marra A M, Bartoli G. VIV-galloping instability of rectangular cylinders: review and new experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132: 109-124. doi: 10.1016/j.jweia.2014.06.021
    [9] Mannini C, Marra A M, Massai T, et al. VIV-galloping instability of a rectangular cylinder in turbulent flow[C]. The 14th International Conference on Wind Engineering (ICWE14), Portal Alegre, 2015.
    [10] Parkinson G V. Some considerations of combined effects of galloping and vortex resonance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 8: 135-143. doi: 10.1016/0167-6105(81)90014-3
    [11] Corless R M. Mathematical modeling of the combined effects of vortex-induced vibration and galloping[D]. British: University of British Columbia, 1987.
    [12] Tamura Y, Shimada K. A mathematical model for the transverse oscillations of square cylinders[C]. International Conference on Flow Induced Vibrations, England, 1987.
    [13] Mannini C, Massai T, Marra A M, et al. Modelling the interaction of VIV and galloping for rectangular cylinders[C]. 14th International Conference on Wind Engineering (ICWE14), Portal Alegre, Brazil, 2015.
    [14] Zhu L D, Meng X L, Guo Z S. Nonlinear mathematical model of vortex-induced vertical force on a flat closed-box bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 122: 69-82. doi: 10.1016/j.jweia.2013.07.008
    [15] Zhu L D, Du L Q, Meng X L, et al. Nonlinear mathematical models of vortex-induced vertical force and torque on a centrally-slotted box deck[C]. 14th International Conference on Wind Engineering, Porto Alegre, Brazil, 2015.
    [16] Mannini C, Marra A M, Bartoli G. Experimental investigation on VIV-galloping interaction of a rectangular 3:2 cylinder[J]. Meccanica, 2015, 50: 841-853. doi: 10.1007/s11012-014-0025-8
    [17] Parkinson G V. Phenomena and modeling of flow-induced vibrations of bluff bodies[J]. Progress in Aerospace Science, 1989, 26: 169-224. doi: 10.1016/0376-0421(89)90008-0
    [18] Yan L, Zhu L D, Flay R G J. Comparison of force-balance and pressure measurements on deck strips on a stationary bridge model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164: 96-107. doi: 10.1016/j.jweia.2017.02.010
    [19] Gao G Z, Zhu L D. Nonlinearity of mechanical damping and stiffness of a spring-suspended sectional model system for wind tunnel tests[J]. Journal of Sound & Vibration, 2015, 355: 369-391. http://www.docin.com/p-1372202522.html
    [20] Gao G Z, Zhu L D. Measurement and verification of unsteady galloping force on a rectangular 2:1 cylinder[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 157: 76-94. https://www.researchgate.net/publication/308771569_Measurement_and_verification_of_unsteady_galloping_force_on_a_rectangular_21_cylinder
    [21] 朱乐东.桥梁固有模态的识别[J].同济大学学报, 1999, 27(2): 179-183. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ902.011.htm

    Zhu L D. Modal identification of bridges[J]. Journal of Tongji University, 1999, 27(2):179-183. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ902.011.htm
    [22] 孙鑫晖, 郝木明, 张令弥.环境激励下宽频带模态参数识别研究[J].建筑结构学报, 2011, 32(4): 151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201104021.htm

    Sun X H, Hao M M, Zhang L M. Research on broadband modal parameters identification under ambient excitation[J]. Journal of Building Structures, 2011, 32(4): 151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201104021.htm
    [23] 李海龙. 环境激励下结构模态参数识别方法研究[D]. 重庆: 重庆大学, 2012.

    Li H L. Research on methods of structural modal parameter identification under ambient excitation[D]. Chongqing: Chongqing University, 2012.
    [24] Gao G Z, Zhu L D, Ding Q S. Identification of nonlinear damping and stiffness of spring-suspended sectional model[C]. Eighth Asia-Pacific Conference on Wind Engineering, Chennai, India, 2013: 263-272.
  • 加载中
图(35) / 表(1)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  95
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 修回日期:  2017-04-15
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日