留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热敏式壁面剪应力微传感器技术研究进展

孙宝云 马炳和 邓进军 姜澄宇

孙宝云, 马炳和, 邓进军, 等. 热敏式壁面剪应力微传感器技术研究进展[J]. 实验流体力学, 2017, 31(2): 26-33, 43. doi: 10.11729/syltlx20170022
引用本文: 孙宝云, 马炳和, 邓进军, 等. 热敏式壁面剪应力微传感器技术研究进展[J]. 实验流体力学, 2017, 31(2): 26-33, 43. doi: 10.11729/syltlx20170022
Sun Baoyun, Ma Binghe, Deng Jinjun, et al. Research progress on thermal wall shear stress sensors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 26-33, 43. doi: 10.11729/syltlx20170022
Citation: Sun Baoyun, Ma Binghe, Deng Jinjun, et al. Research progress on thermal wall shear stress sensors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 26-33, 43. doi: 10.11729/syltlx20170022

热敏式壁面剪应力微传感器技术研究进展

doi: 10.11729/syltlx20170022
基金项目: 

国家重大科学仪器设备开发专项 2013YQ040911

详细信息
    作者简介:

    孙宝云 (1992-), 男, 安徽蚌埠人, 博士研究生。研究方向:柔性壁面剪应力微传感器。通信地址:陕西省西安市碑林区友谊西路127号 (710072)。E-mail:sunbaoyun@mail.nwpu.edu.cn

    通讯作者:

    马炳和, E-mail: mabh@nwpu.edu.cn

  • 中图分类号: TH823;TP212

Research progress on thermal wall shear stress sensors

  • 摘要: 基于MEMS技术的热敏式微传感器为壁面剪应力的测量提供了重要手段。本文介绍了国内外热敏式壁面剪应力微传感器技术的研究发展现状,重点从硅基和柔性聚合物基2种结构角度,对其工作原理以及不同热敏式微传感器的结构、关键工艺和性能测试进行了分析。
  • 图  1  热敏式微传感器工作原理示意图

    Figure  1.  Schematic view of the thermal sensors working principle

    图  2  硅基热敏式壁面剪应力微传感器横截面结构示意图

    Figure  2.  Cross-sectional schematic of the silicon-based thermal shear-stress sensor

    图  3  传感器热敏单元光学显微镜照片

    Figure  3.  An optical micrograph of the shear stress sensor sensing element

    图  4  硅基热敏式微传感器条带

    Figure  4.  Silicon-based thermal shear stress sensor array

    图  5  涂覆Parylene C防护层的传感器在盐水中浸泡27个月后电镜照片

    Figure  5.  Micrographs of a parylene C-coated shear-stress sensor (a) before and (b) after 27 months saline soaking

    图  6  传感器热敏单元扫描电镜图片

    Figure  6.  Plan-view SEM of the active area of the platinum-based sensor

    图  7  不同过热比下传感器静态标定结果

    Figure  7.  Static response of the sensor vs. shear stress at different overheat ratios

    图  8  热敏式剪应力传感器动态标定实验结果 (过热比0.92)

    Figure  8.  The dynamic calibration result of the thermal shear stress sensor (overheat ratio 0.92)

    图  9  硅玻键合热敏式剪应力微传感器结构示意图

    Figure  9.  3D view of the proposed shear stress sensor

    图  10  (a) 封装后的传感器; (b) 与测试电路集成后的传感器

    Figure  10.  (a) The packaged sensors. (b) The fully assembled sensors with test circuit boards

    图  11  传感器静态标定实验结果

    Figure  11.  The static calibration result of the thermal shear stress sensor

    图  12  聚酰亚胺基底上的热线传感器

    Figure  12.  MEMS wall hot-wire sensor on polyimide substrate

    图  13  机翼模型表面的热线传感器阵列

    Figure  13.  The hot-wire sensor array on top surface of flap

    图  14  柔性基底上集成的硅基热敏式微传感器阵列

    Figure  14.  Silicon-based thermal sensors on flexible sublayer

    图  15  流动分离实验装置

    Figure  15.  Flow separation experiment device

    图  16  西北工业大学研制的柔性热膜微传感器阵列

    Figure  16.  Flexible hot film shear stress sensor arrayfabricated by NPU

    图  17  同一传感器不同过热比条件下空气静态标定实验结果

    Figure  17.  The static calibration result in the air at different overheat ratios

    图  18  同一传感器不同过热比条件下水下标定实验结果

    Figure  18.  The underwater static calibration result at different overheat ratios

    图  19  壁面剪应力测试仪工程样机

    Figure  19.  Wall shear stress testing instrument

    图  20  流动分离、转捩实验

    Figure  20.  Flow separation andtransition experiments

    图  21  布伦瑞克工业大学研制的柔性热敏式微传感器阵列

    Figure  21.  Flexible thermal shear stress sensor array

    图  22  广岛城市大学传感器结构示意图

    Figure  22.  Cross-sectional schematic of the sensor

    图  23  广岛城市大学剪应力传感器实物图

    Figure  23.  Shear stress sensor proposed by Hiroshima City University

    图  24  柔性血管内壁面剪应力测量微传感器

    Figure  24.  Flexible intravascular wall shear stress sensors

    图  25  新西兰兔体内MEMS传感器荧光显微镜图片

    Figure  25.  Fluoroscope images of in vivo testing of the MEMS sensor in NZW rabbit

    图  26  新西兰兔血管内壁面剪应力测试结果

    Figure  26.  The result of shear stress measurement in NZW rabbit

    图  27  (a) 未封装的传感器; (b) 传感器封装结构

    Figure  27.  (a) Unwired sensing device. (b) Sensing device assembled with external wires

    图  28  平面结构和螺旋结构的微传感器

    Figure  28.  In plane and spirally rolled structure of glucose, temperature and flow micro sensors

    图  29  (a) 温度传感器测试结果; (b) 流速传感器测试结果

    Figure  29.  (a) The test result of temperature sensor. (b) The test result of flow rate sensor

  • [1] Johnson C B, Carraway D L. A transition detection study at Mach 1.5、2.0 and 2.5 using a micro-thin hot-film system[C]. Instrumentation in Aerospace Simulation Facilities, ICIASF'89 Record, International Congress on IEEE, 1989:82-94.
    [2] Riedl X, Leuckert J, Engert M, et al. Transition measurement with microstructured hot film sensor arrays on a laminar flow airfoil model[M]. Berlin Heidelberg:Springer, 2013:641-648.
    [3] Tokugawa N, Yoshida K. Transition detection on supersonic natural laminar flow wing in the flight[R]. AIAA Paper, 2006, 3165.
    [4] Naughton J W, Sheplak M. Modern developments in shear-stress measurement[J]. Progress in Aerospace Sciences, 2002, 38(6):515-570. https://www.researchgate.net/publication/228703570_Modern_developments_in_shear-stress_measurement_1
    [5] Sheplak M, Cattafesta L, Nishida T, et al. MEMS shear stress sensors:promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology Testing Conference, Florida University, 2004.
    [6] Oudheusden B, Huijsing J. Integrated flow friction sensor[J]. Sensors and Actuators, 1988, 15:135-144. doi: 10.1016/0250-6874(88)87003-3
    [7] Liu C, Tai Y C, Huang J, et al. Surface micromachined thermal shear-stress sensor[C]//Proceedings of the ASME Symposium on Application of Microfabrication to Fluid Mechanics, ASME Winter Annual Meeting, Chicago, 1994:9-15.
    [8] Liu C, Huang J B, Zhu Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems, 1999, 8(1):90-99. doi: 10.1109/84.749408
    [9] Huang J B, Jiang F K, Tai Y C, et al. A micro-electro-mechanical-system-based thermal shear-stress sensor with self-frequency compensation[J]. Measurement Science and Technology, 1999, 10(8):687. doi: 10.1088/0957-0233/10/8/303
    [10] Jiang F, Tai Y C, Gupta B, et al. A surface-micromachined shear-stress imager[C]//Proceedings of 1996 IEEE Micro Electro Mechanical Systems Workshop (MEMS'96), San Diego, 1996:110-115.
    [11] Jiang F, Tai Y C, Walsh K, et al. A flexible MEMS technology and its first application to shear-stress sensor skin[C]//Proceedings of 1997 IEEE Micro Electro Mechanical Systems Workshop (MEMS'97), Nagoya, Japan, 1997:465-470.
    [12] Jiang F, Lee G B, Tai Y C, et al. A flexible micromachine-based shear-stress sensor array and its application to separation-point detection[J]. Sensors and Actuators A:Physical, 2000, 79(3):194-203. doi: 10.1016/S0924-4247(99)00277-0
    [13] Jiang F, Xu Y, Weng T, et al. Flexible shear stress sensor skin for aerodynamics applications[C]. The Thirteenth Annual International Conference on IEEE, 2000:364-369.
    [14] Xu Y, Jiang F, Lin Q, et al. Underwater shear-stress sensor[C]. IEEE International Conference on Micro Electro Mechanical Systems, 2002:340-343.
    [15] Xu Y, Tai Y C, Huang A, et al. IC-integrated flexible shear-stress sensor skin[J]. Journal of Microelectromechanical Systems, 2003, 12(5):740-747. doi: 10.1109/JMEMS.2003.815831
    [16] Xu Y, Jiang F, Newbern S, et al. Flexible shear-stress sensor skin and its application to unmanned aerial vehicles[J]. Sensors & Actuators A:Physical, 2003, 105(3):321-329.
    [17] Xu Y, Lin Q, Lin G, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5):1023-1030. doi: 10.1109/JMEMS.2005.856644
    [18] Cain A, Chandrasekaran V, Nishida T, et al. Development of a wafer-bonded, silicon nitride membrane thermal shear-stress sensor with platinum sensing element[C]. Technical Digest, Solid-State Sensor and Actuator Workshop, 2000:300-303.
    [19] Chandrasekaran V, Cain A, Nishida T, et al. Characterization of a micromachined thermal shear stress sensor[C]. 39th Aerospace sciences Meeting and Exhibit, 2001.
    [20] Chandrasekaran V. Dynamic calibration technique for thermal shear-stress sensors with variable mean flow[D]. Gainesville:University of Florida, 2000.
    [21] Jang S L. A model of 1/f noise in polysilicon resistors[J]. Solid-State Electron, 1990, 33:1155-1162. doi: 10.1016/0038-1101(90)90094-U
    [22] Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using Stokes-layer excitation[J]. AIAA Journal, 2001, 39(5):819-823. doi: 10.2514/2.1415
    [23] Ou Y, Qu F, Wang G, et al. A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology[J]. Applied Physics Letters, 2016, 109(2):023512. doi: 10.1063/1.4958842
    [24] Buder U, Berns A, Obermeier E, et al. Aero MEMS wall hot-wire anemometer on polyimide foil for measurement of high frequency fluctuations[C]. Sensors, 2005 IEEE, 2005.
    [25] Buder U, Henning L, Neumann A, et al. Aeromems wall hot-wire sensor arrays on polyimide with through foil vias and bottom side electrical contacts[C]. Solid-State Sensors, Actuators and Microsystems Conference, 2007:2333-2336.
    [26] Buder U, Petz R, Kittel M, et al. Aero MEMS polyimide based wall double hot-wire sensors for flow separation detection[J]. Sensors & Actuators A:Physical, 2008, 142(1):130-137.
    [27] 刘奎, 苑伟政, 邓进军, 等.微型热敏传感器的薄膜电阻设计研究[J].中国机械工程, 2005, (z1):202-204. doi: 10.3321/j.issn:1004-132X.2005.z1.069

    Liu K, Yuan W Z, Deng J J, et al. Design investigation on micro thermal sensor film resistor[J]. China Mechanical Engineering, 2005, (z1):202-204. doi: 10.3321/j.issn:1004-132X.2005.z1.069
    [28] 刘奎, 苑伟政, 邓进军, 等.基于微型剪应力传感器阵列的边界层分离点测定方法研究[J].航空学报, 2006, 27(1):142-146. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200601028.htm

    Liu K, Yuan W Z, Deng J J, et al. Investigation of using micro shear stress sensor array to detect boundary-layer separation point[J]. Chinese Journal of Aeronautics, 2006, 27(1):142-146. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200601028.htm
    [29] 刘奎, 苑伟政, 马炳和, 等.微型热敏传感器系统动态特性理论研究[J].仪器仪表学报, 2006, 27(6):648-652. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB200606021.htm

    Liu K, Yuan W Z, Ma B H, et al. Investigation in the dynamic characteristic of the micro thermal sensor system[J]. Chinese Journal of Scientific Instrument, 2006, 27(6):648-652. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB200606021.htm
    [30] 刘奎, 苑伟政, 邓进军, 等.微型热敏传感器的结构设计及仿真分析[J].航空学报, 2007, 28(2):476-480. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200702042.htm

    Liu K, Yuan W Z, Deng J J, et al. Design and simulation of structure of micro thermal sensor device[J]. Chinese Journal of Aeronautics, 2007, 28(2):476-480. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200702042.htm
    [31] Liu K, Yuan W Z, Deng J J, et al. Detecting boundary-layer separation point with a micro shear stress sensor array[J]. Sensors and Actuators A:Physical, 2007, 139(1):31-35.
    [32] Liu K, Yuan W Z, Deng J J, et al. Sensing flow separation on a typical aerofoil by mems flexible thermal sensor array[C]. First International Conference on Integration and Commercialization of Micro and Nanosystems, American Society of Mechanical Engineers, 2007:235-239.
    [33] Liu K, Yuan W Z, Ma B H, et al. The fabrication and integration of a novel shear stress sensor array and its wind tunnel test[J]. Journal of Micro-Bio Robotics, 2008, 4(3):115-120.
    [34] 马炳和, 赵建国, 邓进军, 等.全柔性热膜微传感器阵列制造工艺及性能优化[J].光学精密工程, 2009, 17(8):1971-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200908032.htm

    Ma B H, Zhao J G, Deng J J, et al. Fabrication of flexible hot film sensors arrary and its optimization[J]. Optics and Precision Engineering, 2009, 17(8):1971-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200908032.htm
    [35] 马炳和, 傅博, 李建强, 等.溅射-电镀微成型制造柔性热膜传感器阵列[J].航空学报, 2011, 32(11):2147-2152. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201111022.htm

    Ma B H, Fu B, Li J Q, et al. Flexible hot-film sensor array fabricated with sputtering-electroplating micromachining[J]. Chinese Journal of Aeronautics, 2011, 32(11):2147-2152. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201111022.htm
    [36] 马炳和, 王毅, 姜澄宇, 等.柔性热膜剪应力传感器水下测量温度修正[J].实验流体力学, 2014, 28(2):39-44. doi: 10.11729/syltlx20140006

    Ma B H, Wang Y, Jiang C Y, et al. Temperature correction of flexible thermal shear stress sensor for underwater measurements[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):39-44. doi: 10.11729/syltlx20140006
    [37] 肖同新, 马炳和, 邓进军, 等.基于柔性热膜传感器的流体壁面剪应力测量系统[J].传感器与微系统, 2013, 32(7):101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201307031.htm

    Xiao T X, Ma B H, Deng J J, et al. Fluid wall shear stress measurement system based on flexible hot film sensor[J]. Transducer and Microsystem Technologies, 2013, 32(7):101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201307031.htm
    [38] Li X Y, Li Y B, Ma B H, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & Nano Letters, 2014, 9(7):486-489. https://www.researchgate.net/publication/275514855_Modelling_and_calibration_of_microthermal_sensor_for_underwater_wall_shear_stress_measurement
    [39] Zhu P F, Ma B H, Jiang C Y, et al. Improved sensitivity of micro thermal sensor for underwater wall shear stress measurement[J]. Microsystem Technologies, 2015, 21(4):785-789. doi: 10.1007/s00542-014-2304-7
    [40] Beutel T, Leester-Schädel M, Dietzel A. Manufacturing of flexible micro hot-film probes for aeronautical purposes[J]. Microelectronic Engineering, 2013, 111(11):238-241.
    [41] Beutel T, Schwerter M, Leesterschädel M. Flexible hot-film anemometer arrays for flow measurements on curved structures[C]. SPIE 8763 Smart Sensors, Actuators, and MEMS Ⅵ. 2013:87630N-87630N-8.
    [42] Schwerter M, Beutel T, Leester-Schädel M, et al. Flexible hot-film anemometer arrays on curved structures for active flow control on airplane wings[J]. Microsystem Technologies, 2014, 20(4-5):821-829. doi: 10.1007/s00542-013-2054-y
    [43] Hasegawa Y, Yamada T, Shikida M. Fabrication of smooth-surfaced flexible thermal sensor for detecting wall shear stress[C]. IEEE, International Conference on MICRO Electro Mechanical Systems, 2016.
    [44] Yu H, Ai L, Rouhanizadeh M, et al. Flexible polymer sensors for in vivo intravascular shear stress analysis[J]. Journal of Microelectromechanical Systems, 2008, 17(5):1178-1186. doi: 10.1109/JMEMS.2008.927749
    [45] Ai L, Yu H, Takabe W, et al. Optimization of intravascular shear stress assessment in vivo[J]. Journal of Biomechanics, 2009, 42(10):1429-1437. doi: 10.1016/j.jbiomech.2009.04.021
    [46] Tang R, Huang H, Yang Y M, et al. Three-dimensional flexible thermal sensor for intravascular flow monitoring[J]. IEEE Sensors Journal, 2013, 13(10):3991-3998. doi: 10.1109/JSEN.2013.2264623
    [47] Li C, Wu P M, Han J, et al. A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter[J]. Biomedical Microdevices, 2008, 10(5):671-679. doi: 10.1007/s10544-008-9178-3
  • 加载中
图(29)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  118
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 修回日期:  2017-02-23
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日