留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长鳍波动推进流向涡结构PIV试验研究

张军 白亚强 翟树成 张国平 徐良浩

张军, 白亚强, 翟树成, 等. 长鳍波动推进流向涡结构PIV试验研究[J]. 实验流体力学, 2017, 31(6): 15-21. doi: 10.11729/syltlx20170017
引用本文: 张军, 白亚强, 翟树成, 等. 长鳍波动推进流向涡结构PIV试验研究[J]. 实验流体力学, 2017, 31(6): 15-21. doi: 10.11729/syltlx20170017
Zhang Jun, Bai Yaqiang, Zhai Shucheng, et al. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 15-21. doi: 10.11729/syltlx20170017
Citation: Zhang Jun, Bai Yaqiang, Zhai Shucheng, et al. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 15-21. doi: 10.11729/syltlx20170017

长鳍波动推进流向涡结构PIV试验研究

doi: 10.11729/syltlx20170017
基金项目: 

国家自然科学基金 51379193

详细信息
    作者简介:

    张军(1967-), 男, 江苏如东人, 研究员。研究方向:仿生水动力学与流动控制。通信地址:无锡市滨湖区山水东路222号(214082)。E-mail:zhangjuncssrc@163.com

    通讯作者:

    张军, E-mail: zhangjuncssrc@163.com

  • 中图分类号: O352

PIV measurement on streamwise vortex generated by undulating fins

  • 摘要: 鱼类的高效、低噪声、高机动游动为水下航行体推进技术研究提供了很好的启发与借鉴。尼罗河魔鬼鱼依靠长背鳍波动推进,可以在主体基本不变形下巡游,还可以通过改变波动方向敏捷地倒退或前进。对于这种推进模式国内外已经开展了一些仿生推进水动力实验研究,对流动涡结构也有一些数值计算研究,但对流动涡结构试验研究开展很少,因而数值计算方法也缺乏充分的验证。本文针对MPF(Median and/or Paired Fin,中央/对鳍)模式长鳍波动推进,采用相位同步PIV技术测量了系泊状态下首、中、尾部及尾流不同相位横截面流场,采用相位平均方法计算获得平均速度场,进一步提取分析了流向涡涡结构特征及其随相位的演变规律,为长鳍波动推进涡结构数值预报和水动力机理揭示提供了试验依据与支撑。
  • 图  1  波动鳍模型

    Figure  1.  Modeling of undulating fins

    图  2  PIV测量横截面示意图

    Figure  2.  Schematic of PIV measurement in cross section

    图  3  横截面流场测试照片

    Figure  3.  Photo of PIV measurement of cross section

    图  4  首部横截面流场测试与分析结果

    Figure  4.  Flow field analysis of forepart cross section

    图  5  首部横截面相位平均流场随相位变化序列图

    Figure  5.  Phase-averaged velocity field varied with phase in forepart cross section

    图  6  中部横截面相位平均流场随相位变化序列图

    Figure  6.  Phase-averaged velocity field varied with phase in middle cross section

    图  7  尾部横截面相位平均流场随相位变化序列图

    Figure  7.  Phase-averaged velocity field varied with phase in posterior cross section

    图  8  鳍面尾流横截面平均流场结构序列图

    Figure  8.  Phase-averaged velocity field varied with phase in the wake

  • [1] 王光明, 胡天江, 李非, 等.长背鳍波动推进游动研究[J].机械工程学报, 2006, 42(3):88-92. http://d.wanfangdata.com.cn/Periodical/jxgcxb200603015

    Wang G M, Hu T J, Li F, et al. Research on swimming by undulatory long dorsal fin propulsion[J]. Chinese Journal of Mechanical Engineering, 2006, 42(3):88-92. http://d.wanfangdata.com.cn/Periodical/jxgcxb200603015
    [2] 徐海军, 潘存云, 张代兵, 等.不同水下仿生推进器性能影响的比较[J].机械设计与研究, 2010, 26(1):93-96. http://d.wanfangdata.com.cn/Periodical/jxsjyyj201001021

    Xu H J, Pan C Y, Zhang D B, et al. Comparative study on the propulsive performance of underwater bionic thrusters with different transmission methods[J]. Machine Design and Research, 2010, 26(1):93-96. http://d.wanfangdata.com.cn/Periodical/jxsjyyj201001021
    [3] 王扬威, 王振龙, 李健, 等.形状记忆合金驱动仿生蝠鲼机器鱼的设计[J].机器人, 2010, 32(2):256-261. http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201002018.htm

    Wang Y W, Wang Z L, Li J, et al. Development of a biomimetic manta ray robot fish actuated by shape memory alloy[J]. Robot, 2010, 32(2):256-261. http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201002018.htm
    [4] MacIver M A, Fontaine E, Burdick J W. Designing future underwater vehicles:principles and mechanisms of the weakly electric fish[J]. IEEE Journal of Oceanic Engineering, 2004, 39(3):651-659. http://citeseerx.ist.psu.edu/viewdoc/bookmark?doi=10.1.1.116.1197&site=connotea
    [5] Willy A, Low K H. Initial experimental investigation of undulating fin[C]. The IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. http://ieeexplore.ieee.org/document/1545280/
    [6] Low K H. Mechatronics and buoyancy implementation of robotic fish with modular fin mechanisms[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Contol Engineering, 2007, 221(3):295-309. https://www.researchgate.net/publication/238185971_Mechatronics_and_buoyancy_implementation_of_robotic_fish_swimming_with_modular_fin_mechanisms
    [7] Shirgaonkar A A, Curet O M, Patankar N A, et al. The hydrodynamics of ribbon-fin propulsion during impulsive motion[J]. J Expt Biol, 2008, 211:3490-3503. doi: 10.1242/jeb.019224
    [8] Rahman M M, Toda Y, Miki H. Study on the performance of the undulating side with various aspect ratios using computed flow, pressure field and hydrodynamic forces[C]//Proc of the 5th Asia-Pasific Workshop on Marine Hydr, Osaka, Japan, 2010.
    [9] Rahman M M, Toda Y. Miki H. Computational study on the fish-like underwater robot with two undulating side fins for various aspect ratios, fin angles and frequencies[C]. The International Conference on Marine Technology, BUET, Dhaka, Bangladesh, 2010.
    [10] Rahman M M, Sugimori S, Mike H, et al. Braking performance of a biomimetic squid-like underwater robot[J]. Journal of Bionic Engineering, 2013, 10:265-273. doi: 10.1016/S1672-6529(13)60222-X
    [11] 王兆立, 苏玉民, 杨亮.黏性流场中鱼类胸鳍的水动力性能分析[J].水动力学研究与进展:A辑, 2009, 24(2):141-149. http://www.cqvip.com/QK/94099X/200902/30284051.html

    Wang Z L, Su Y M, Yang L. Hydrodynamic analysis of the pectoral-fin in viscous flows[J]. Chinese Journal of Hydrodynamics:Ser A, 2009, 24(2):141-149. http://www.cqvip.com/QK/94099X/200902/30284051.html
    [12] 徐晓锋, 万德成.金枪鱼自主波动游动的数值模拟[J].水动力学研究与进展:A辑, 2011, 26(2):228-238. http://www.wenkuxiazai.com/doc/96be23f6f61fb7360b4c6579-2.html

    Xu X F, Wan D C. Numerical simulation of tuna undulatory swimming[J]. Chinese Journal of Hydrodynamics:Ser A, 2011, 26(2):228-238. http://www.wenkuxiazai.com/doc/96be23f6f61fb7360b4c6579-2.html
    [13] 老轶佳, 王志东, 张振山, 等.摆动柔性鳍尾涡流场的实验测试与分析[J].水动力学研究与进展:A辑, 2009, 24(1):107-112. http://d.wanfangdata.com.cn/Periodical/sdlxyjyjz200901016

    Lao Y J, Wang Z D, Zhang Z S, et al. Experimental measurement and analysis on the wake vortex of oscillating flexible caudal fin[J]. Chinese Journal of Hydrodynamics:Ser A, 2009, 24(1):107-112. http://d.wanfangdata.com.cn/Periodical/sdlxyjyjz200901016
    [14] 王光明. 仿鱼柔性长鳍波动推进理论与实验研究[D]. 长沙: 国防科学技术大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098436.htm

    Wang G M. Theoretic and experimental research on propulsion by bionic undulatory fin[D]. Changsha:National University of Defense Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098436.htm
    [15] 刘芳芳. 基于柔性鳍波动的水下仿生系统推进性能研究[D]. 杭州: 浙江大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012321274.htm

    Wang F F. Research on flexible undulating fin based biomimetic system underwater and its propulsion[D]. Hangzhou:Zhejiang University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012321274.htm
    [16] 张国平, 张军, 翟树成. 长鳍扭波推进PIV试验初步研究[R]. 江苏无锡: 中国船舶科学研究中心, 2011.
  • 加载中
图(8)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  89
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-25
  • 修回日期:  2017-08-18
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日