留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

底层隔板法壁面剪应力测量技术研究与发展

马骋宇 马炳和 邓进军 周梓桐 张晗

马骋宇, 马炳和, 邓进军, 等. 底层隔板法壁面剪应力测量技术研究与发展[J]. 实验流体力学, 2017, 31(2): 13-18. doi: 10.11729/syltlx20170010
引用本文: 马骋宇, 马炳和, 邓进军, 等. 底层隔板法壁面剪应力测量技术研究与发展[J]. 实验流体力学, 2017, 31(2): 13-18. doi: 10.11729/syltlx20170010
Ma Chengyu, Ma Binghe, Deng Jinjun, et al. Sublayer fence for wall shear stress measurement[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 13-18. doi: 10.11729/syltlx20170010
Citation: Ma Chengyu, Ma Binghe, Deng Jinjun, et al. Sublayer fence for wall shear stress measurement[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 13-18. doi: 10.11729/syltlx20170010

底层隔板法壁面剪应力测量技术研究与发展

doi: 10.11729/syltlx20170010
基金项目: 

国家重点基础研究发展计划 2015CB057400

国家重大科学仪器设备开发专项 2013YQ040911

详细信息
    作者简介:

    马骋宇 (1988-), 男, 陕西西安人, 博士研究生。研究方向:MEMS集成设计与制造、高焓流场摩阻测试微系统。通信地址:西北工业大学空天微纳系统教育部重点实验室 (710072)。E-mail:macy@mail.nwpu.edu.cn

    通讯作者:

    马炳和, E-mail: mabh@nwpu.edu.cn

  • 中图分类号: TP212.9

Sublayer fence for wall shear stress measurement

  • 摘要: 介绍了机械式底层隔板测量流体壁面剪应力的基本原理。重点阐述了基于微机电系统(MEMS)的微型底层隔板的集成化结构及其工作原理,介绍了其研究发展及测试应用情况。最后,简要分析了常规剪应力微传感器在高温测试方面的弊端,并结合已有高温摩阻测试研究,提出了未来壁面剪应力测量技术的发展方向。
  • 图  1  机械式底层隔板结构及工作原理图

    Figure  1.  Schematics diagram of the structure of the conventional sublayer fence and its working principle

    图  2  (a) 方向灵敏度标定曲线 (b) 剪应力方向标定曲线

    Figure  2.  (a) Directional sensitivities of individual fence elements. (b) Directional calibration of the surface-fence gage

    图  3  底层隔板嵌装在模型壁面示意图

    Figure  3.  Sublayer fence mounting on the wall of model

    图  4  2002年Papen研制的MEMS底层隔板

    Figure  4.  Photographs of the fabricated micro fence probe by Papen

    图  5  传感器剪应力标定曲线

    Figure  5.  Output signal of the sensors as a function of wall shear stress

    图  6  纵坐标为隔板和来流呈φ角度时传感器所测剪应力与隔板和来流垂直时传感器所测剪应力的比值,横坐标是隔板与来流的角度φ

    Figure  6.  Output signal as a function of the angle between the direction of the wall shear stress and the direction perpendicular to the fence

    图  7  Schober于2004年提出的微底层隔板

    Figure  7.  Sensitivity enhanced by introducing a slot at the base of the fence

    图  8  2006年提出的微底层隔板及其封装结构

    Figure  8.  MEMS surface fence proposed by Schiffer and its package structure

    图  9  两种测量手段得到的摩擦系数、均方根摩擦系数、反流因数对比

    Figure  9.  Comparison of wall-pulsed wire and micro fence behind an obstacle. (Top: Cf, middle: C′ f, bottom: xw)

    图  10  MEMS底层隔板安装于涡流发生装置的工作示意图

    Figure  10.  A length-wise cross-section of the measurement section of the vortex cell. The test location at the bottom of the cell, where the MEMS fence is mounted. The mixing layer formed over a 40°sector of the circumference by separation at the leading cusp

    图  11  (a) 沿测点径向的速度型;(b) MEMS底层隔板测得的湍流剪应力值

    Figure  11.  (a) LDA profiles of mean circumferential velocity. (b) Turbulent shear stress

    图  12  双底层隔板流场仿真模型及其关系示意图

    Figure  12.  The modeling solution of MEMS dual-fences gauge

    图  13  双底层隔板流场仿真模型及其关系示意图

    Figure  13.  The modeling solution of MEMS dual-fences gauge

    图  14  暂冲式风洞结构示意图

    Figure  14.  Schematic diagram of the blowdown wind tunnel

    图  15  美国空军实验室联合弗吉尼亚理工大学研制的高温摩阻太平

    Figure  15.  Core structure of the high temperature friction balance

  • [1] 戴昌晖, 刘天舒, 滕永光, 等.湍流附面层壁面摩擦应力的测量方法[J].航空学报, 1988, 9(5):3-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198805000.htm

    Dai C H, Liu T S, Teng Y G, et al. Measureing techniques for wall shearing stress in turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(5):3-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198805000.htm
    [2] Konstantinov N I, Dragnysh G L. The measurement of friction stress on a surface[J]. DSIR RTS, 1960.
    [3] Patel V C. Calibration of the Preston tube and limitations on its use in pressure gradients[J]. Journal of Fluid Mechanics, 1965, 23(1):185-208. doi: 10.1017/S0022112065001301
    [4] Vagt J D, Fernholz H. Use of surface fences to measure wall shear stress in three-dimensional boundary layers[J]. The Aeronautical Quarterly, 1973, 24(2):87-91.
    [5] Fiore A, Scaggs N. Calibration of a boundary layer fence technique for surface shear stress measurements in a compressible flow field[J]. Injury-international Journal of the Care of the Injured, 2013, 47(1):77-82.
    [6] Nitsche W, Haberland C, Thuenker R. Comparative investigations on friction drag measuring techniques in experimental aerodynamics[C]. Icas Congress, 1984.
    [7] Higuchi H. A miniature, directional surface-fence gage for three-dimensional turbulent boundary layer measurements[C]. 16th Fluid and Plasmadynamics Conference, 1983:1722.
    [8] Higuchi H. A miniature, directional surface-fence gage[J]. AIAA Journal, 1985, 23(8):1195-1196. doi: 10.2514/3.9064
    [9] Higuchi H, Peake D J. Bi-directional, buried-wire skin-friction gage[R]. NASA TM-78531, 1978.
    [10] Fernholz H H, Janke G, Schober M, et al. New developments and applications of skin-friction measuring techniques[J]. Measurement Science & Technology, 1996, 7(10):1-2.
    [11] Papen T V, Steffes H, Ngo H D, et al. A micro surface fence probe for the application in flow reversal areas[J]. Sensors & Actuators A:Physical, 2002, s 97-98(01):264-270.
    [12] Schober M, Obermeier E, Pirskawetz S, et al. A MEMS skin-friction sensor for time resolved measurements in separated flows[J]. Experiments in Fluids, 2004, 36(4):593-599. doi: 10.1007/s00348-003-0728-4
    [13] Papen T V, Buder U, Ngo H D, et al. A second generation MEMS surface fence sensor for high resolution wall shear stress measurement[J]. Sensors & Actuators A:Physical, 2004, 113(2):151-155. https://www.researchgate.net/publication/223376724_A_second_generation_MEMS_surface_fence_sensor_for_high_resolution_wall_shear_stress_measurement
    [14] Schiffer M, Obermeier E, Grewe F, et al. Aero MEMS surface fence for wall shear stress measurements in turbulent flows[C]. AIAA Aerospace Sciences Meeting and Exhibit, 2006.
    [15] 孙海浪, 马炳和, 邓进军, 等.壁面剪应力测量底层隔板数学模型研究[J].航空工程进展, 2012, 3(3):373-378. http://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201203026.htm

    Sun H L, Ma B H, Deng J J, et al. Study on mathematical model of sub-layer fence for wall shear stress measurement[J]. Advances in Aeronautical Science and Engineering, 2012, 3(3):373-378. http://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201203026.htm
    [16] Ma B H, Ma C Y. A MEMS surface fence for wall shear stress measurement with high sensitivity[J]. Microsystem Technologies, 2016, 22(2):239-246. doi: 10.1007/s00542-015-2450-6
    [17] 马骋宇, 马炳和, 孙海浪, 等.面向壁面剪应力测量的底层隔板微敏感结构设计与制造[J].航空学报, 2013, 34(4):963-969. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201304029.htm

    Ma C Y, Ma B H, Sun H L, et al. Design and fabrication of sensitive elements of sublayer fence for wall shear stress sensor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):963-969. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201304029.htm
    [18] Savelsberg R, Schiffer M, Obermeier E, et al. Calibration and use of a MEMS surface fence for wall shear stress measurements in turbulent flows[J]. Experiments in Fluids, 2012, 53(2):77-80.
    [19] Schlichting H. Boundary-layer theory[M]. New York:McGraw-Hill, 1979.
    [20] Ma C, Ma B, Deng J, et al. A study of directional MEMS dual-fences gauge[C]. IEEE International Conference on Nano/micro Engineered and Molecular Systems, 2015.
    [21] Ma B H, Ren J Z, Deng J J, et al. Flexible thermal sensor array on PI film substrate for underwater applications[C]. The 23rd IEEE International Conference on Micro Electro Mechanical System, Hongkong, 2010:679-682.
    [22] Ma B H, Zhao J G, Deng J J, et al. Fabrication of flexible hot film sensor array and its optimization[J]. Guangxue Jingmi Gongcheng/Optics & Precision Engineering, 2009, 17(8):1971-1977.
    [23] Lyu H H, Jiang C Y, Deng J J, et al. Design of micro sensor for wall shear stress measurement[J]. Journal of Mechanical Engineering, 2010, 46(24):54-60. doi: 10.3901/JME.2010.24.054
    [24] Padmanabhan A, Sheplak M, Breuer K S, et al. Micromachined sensors for static and dynamic shear-stress measurements in aerodynamic flows[C]. Digest of Technical Papers, Transducer'97, The 9th International Conference on Solid State Sensors & Actuators, 1997.
    [25] Omid A, Julio S. A film-based wall shear stress sensor for wall-bounded turbulent flows[J]. Experiments in Fluids, 2011, 51(1):137-147. doi: 10.1007/s00348-010-1035-5
    [26] Crafton J W, Fonov S D, Jones E G, et al. Measurements of skin friction in water using surface stress sensitive films[J]. Measurement Science and Technology, 2008, 19(7):075801. doi: 10.1088/0957-0233/19/7/075801
    [27] Sergey F, Grant J, et al. The development of optical techniques for the measurement of pressure and skin friction[J]. Measurement Science and Technology, 2006, 17(6):1261-1268. doi: 10.1088/0957-0233/17/6/S05
    [28] Brücker Ch, Spatz J, Schröder W. Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars[J]. Experiments in Fluids, 2005, 39(2):464-474. doi: 10.1007/s00348-005-1003-7
    [29] Grobe S, Schroder W. The micro-pillar shear-stress sensor MPS3 for turbulent flow[J]. Sensors, 2009, 9(4):2222-2251. doi: 10.3390/s90402222
    [30] Gnanamanickam E P, Sullivan J P. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays[J]. Journal of Micromechanics & Microengineering, 2012, 22(12):125015.
    [31] Gnanamanickam E P, Nottebrock B, Große S, et al. Measurement of turbulent wall shear-stress using micro-pillars[J]. Measurement Science & Technology, 2013, 24(12):124002-124016.
    [32] Taira T, Sadatake T, Kenji K, et al. Skin-friction measurements in supersonic combustion flows of a scramjet combustor[C]. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2008.
    [33] Tsuru T, Tomioka S, Yamasaki H. Accuracy of direct skin-friction measurements in high-enthalpy supersonic flows[J]. AIAA Journal, 2011, 49(6):1267-1271. doi: 10.2514/1.J050691
    [34] Meritt R J, Schetz J A, Donbar J M, et al. Skin friction sensor for high-speed, high-enthalpy scramjet flow applications[C]. AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014.
    [35] Meritt R J, Schetz J A. Skin friction sensor development, validation, and application for high-speed, high-enthalpy flow conditions[J]. Journal of Propulsion & Power, 2016, 32(4):1-13.
  • 加载中
图(15)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  140
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-02-27
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日