留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面剪应力标定方法研究综述

严宇超 姜澄宇 马炳和 薛晓晗 罗剑

严宇超, 姜澄宇, 马炳和, 等. 壁面剪应力标定方法研究综述[J]. 实验流体力学, 2017, 31(2): 20-25. doi: 10.11729/syltlx20170007
引用本文: 严宇超, 姜澄宇, 马炳和, 等. 壁面剪应力标定方法研究综述[J]. 实验流体力学, 2017, 31(2): 20-25. doi: 10.11729/syltlx20170007
Yan Yuchao, Jiang Chengyu, Ma Binghe, et al. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. doi: 10.11729/syltlx20170007
Citation: Yan Yuchao, Jiang Chengyu, Ma Binghe, et al. Review of the calibration methods and devices for wall shear stress[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 20-25. doi: 10.11729/syltlx20170007

壁面剪应力标定方法研究综述

doi: 10.11729/syltlx20170007
基金项目: 

国家重大科学仪器设备开发专项 2013YQ040911

详细信息
    作者简介:

    严宇超 (1991-), 男, 四川乐山人, 博士研究生。研究方向:微机械制造及微纳米技术。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学462信箱 (710072)。E-mail:yanyuchao@mail.nwpu.edu.cn

    通讯作者:

    马炳和, E-mail: mabh@nwpu.edu.cn

  • 中图分类号: TP212

Review of the calibration methods and devices for wall shear stress

  • 摘要: 流体壁面剪应力的标定是实现该类传感器测量的前提。本文介绍了目前主要的3种壁面剪应力静态标定方法和2种动态标定方法,研究了剪应力基准发生原理、标定装置组成及适用范围。归纳总结了各类标定方法的优势与缺点,为壁面剪应力传感器标定方法的合理选择提供参考。
  • 图  1  平板边界层

    Figure  1.  The boundary layer along a flat plate

    图  2  平板边界层转捩

    Figure  2.  Laminar-turbulent transition on a flat plate

    图  3  动量损失剪应力传感器标定系统

    Figure  3.  The calibration system of wall shear stress sensors

    图  4  管道流动剪应力发生装置

    Figure  4.  Wall shear stress calibration device

    图  5  空气介质的剪应力标定装置示意图

    Figure  5.  Air static wall shear stress calibration device

    图  6  扁形水槽内流体纯剪切流示意图

    Figure  6.  The boundary layer in a thin tunnel

    图  7  微型扁薄水槽剪应力发生装置

    Figure  7.  The micro calibration tunnel of wall shear stress

    图  8  旋转圆轮标定法示意图

    Figure  8.  Rotating wheel wall shear stress calibration device

    图  9  (a) 锥板式标定装置原理图; (b) 静态标定的圆盘示意图; (c) 圆筒式旋转黏度计测量原理; (d) 旋转圆筒-平板标定法示意图

    Figure  9.  (a) Cone-plate wall shear stress calibration device. (b) Disk static calibration device.(c) Coaxial cylinder viscometers measurement device. (d) Rotating cylinder-plat wall shear stress calibration device

    图  10  佛罗里达大学动态标定装置示意图

    Figure  10.  Dynamic wall shear stress calibration device designed by university of Florida

    图  11  佛罗里达大学动态标定装置在恒定振幅激励下的频率响应

    Figure  11.  Plot of the frequency response of the PWT for constant voltage amplitude of speaker excitation

    图  12  动态标定圆盘示意图

    Figure  12.  Disk dynamic calibration device

  • [1] Xu Y, Jiang F, Newbern S, et al. Flexible shear-stress sensor skin and its application to unmanned aerial vehicles[J]. Sensors & Actuators A:Physical, 2003, 105(3):321-329. https://www.researchgate.net/publication/222825925_Flexible_shear-stress_sensor_skin_and_its_application_to_unmanned_aerial_vehicles
    [2] Sells J, Chandrasekharan V, Meloy J, et al. Microfabricated silicon-on-Pyrex passive wireless wall shear stress sensor[J]. Sensors, 2011:77-80. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006127352
    [3] Chandrasekharan V, Sells J, Meloy J, et al. A microscale di-fferential capacitive direct wall-shear-stress sensor[J]. Journal of Microelectromechanical Systems, 2011, 20(3):622-635. doi: 10.1109/JMEMS.2011.2140356
    [4] Ma B H, Ren J Z, Deng J J, et al. Flexible thermal sensor array on PI film substrate for underwater applications[C]. Micro Electro Mechanical Systems (MEMS), IEEE 23rd International Conference, 2010:679-682.
    [5] Osorio O D, Silin N. Wall shear stress hot film sensor for use in gases[J]. Journal of Physics:Conference Series. IOP Publishing, 2011, 296(1):012002.
    [6] Xiang D, Yang Y, Xu Y, et al. MEMS-based shear-stress sensor for skin-friction measurements[C]. Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2010:656-661.
    [7] 黄欢, 孙海浪, 田于逵, 等.水下MEMS壁面剪应力传感器标定方案仿真分析与实验验证[J].实验流体力学, 2016, 30(2):79-83. http://www.syltlx.com/CN/abstract/abstract10921.shtml

    Huang H, Sun H L, Tian Y K, et al. CFD analysis and experimental validation on the scheme of calibration for MEMS wall shear stress sensors array for underwater applications[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):79-83. http://www.syltlx.com/CN/abstract/abstract10921.shtml
    [8] Zhe J, Modi V, Farmer K R. A microfabricated wall shear-stress sensor with capacitative sensing[J]. Journal of Microelectromechanical Systems, 2005, 14(1):167-175. doi: 10.1109/JMEMS.2004.839001
    [9] Chandrasekaran V, Cain A, Nishida T, et al. Dynamic calibration technique for thermal shear stress sensors with variable mean flow[C]. Aerospace Sciences Meeting and Exhibit, 2000:56-65.
    [10] Scott M. The need for a shear stress calibration standard[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, 2004:28.
    [11] Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using stokes-layer excitation[J]. AIAA Journal, 2001, 39(5):819-823. doi: 10.2514/2.1415
    [12] Ng K Y, Shajii J, Schmidt M A. A liquid shear-stress sensor fabricated using wafer bonding technology[C]. International Conference on Solid-State Sensors and Actuators, 1991:931-934.
    [13] Hyman D, Pan T, Reshotko E, et al. Microfabricated shear stress sensors, part 2:testing and calibration[J]. AIAA Journal, 1999, 37(1):73-78. doi: 10.2514/2.666
    [14] 章梓雄, 董曾南.粘性流体力学[M].清华大学出版社, 2011.

    Zhang Z X, Dong Z N. Viscous fluid mechanics[M]. Beijing:Tsinghua University Press, 2011.
    [15] Ludwig P. Applied hydro-and aeromechanics[M]. Dover Publications, 1957.
    [16] Tani I, Hama R, Mituisi S. On the permissible roughness in the laminar boundary layer[R]. Report of the Aeronautical Research Institute Tokyo Imperial University, 1940, 15:417-428.
    [17] Schetz J A, Fuhs A E. Handbook of fluid dynamics and fluid machinery:fundamentals of fluid dynamics, Volume Ⅰ[J]. Journal of Fluids Engineering, 1996, 118(2):218. doi: 10.1115/1.2817366
    [18] Patel M P, Reshotko E, Hyman D. Microfabricated shear-stress sensors, part 3:reducing calibration uncertainty[J]. AIAA Journal, 2002, 40(8):1582-1588. doi: 10.2514/2.1827
    [19] Zucrow M J, Hoffman J D. Gas dynamics (vol1)[M]. John Wiley & Sons, 1976.
    [20] Arkillic E B, Breuer K S. Gaseous flow in small channels[C]. AIAA, Shear Flow Conference, Orlando, FL, 1993.
    [21] Padmanabhan A, Goldberg H, Breuer K D, et al. A wafer-bonded floating-element shear stress microsensor with optical position sensing by photodiodes[J]. Journal of Microelectromechanical Systems, 1997, 5(4):307-315.
    [22] Liang J M, Yang D G, Li J Q, et al. Calibration of a thermal MEMS shear stress sensor array[J]. Arabian Journal of Geosciences, 2015, 8(10):8089-8105. doi: 10.1007/s12517-015-1781-z
    [23] Xu Y, Lin Q, Lin G, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5):1023-1030. doi: 10.1109/JMEMS.2005.856644
    [24] Liu C, Huang J B, Zhu Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems, 1999, 8(1):90-99. doi: 10.1109/84.749408
    [25] Li X Y, Li Y B, Ma B H, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & Nano Letters, 2014, 9(7):486-489.
    [26] Zuckerwar A, Scott M. A rotary flow channel for shear stress sensor calibration[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004:2303.
    [27] Shajii J, Ng K Y, Schmidt M A. A microfabricated floating-element shear stress sensor using wafer-bonding technology[J]. Journal of Microelectromechanical Systems, 1992, 1(2):89-94. doi: 10.1109/84.157363
    [28] 陈惠钊. 粘度测量[M]. 第二版. 北京: 中国计量出版社, 2002: 56-103

    Chen H Z. Viscosity measurement[M]. 2nd ed. Beijing:China Metrology Press, 2002:56-103
    [29] Bindzus W, Fayard G, Van Lengerich B, et al. Application of an in-line viscometer to determine the shear stress of plasticised wheat starch[J]. Starch-Stärke, 2002, 54(6):243-251. doi: 10.1002/(ISSN)1521-379X
    [30] Buschmann M H, Dieterich P, Adams N A, et al. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells[J]. Biotechnology and Bioengineering, 2005, 89(5):493-502. doi: 10.1002/(ISSN)1097-0290
    [31] Kim I C, Sang J L. Characterization of a miniature thermal shear-stress sensor with backside connections[J]. Sensors & Actuators A:Physical, 2006, 128(2):305-311. https://www.researchgate.net/publication/222200344_Characterization_of_a_miniature_thermal_shear-stress_sensor_with_backside_connections
    [32] Brown G L, Davey R F. The calibration of hot films for skin friction measurement[J]. Review of Scientific Instruments, 1971, 42(1):1729-1731.
    [33] 肖文涛, 张国忠, 刘坤, 等.同轴圆筒旋转粘度计测量误差的分析与修正[J].现代科学仪器, 2012, (2):114-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201202031.htm

    Xiao W T, Zhang G Z, Liu K, et al. Analysis and correction for measurement errors of coaxial cylinder viscometers[J]. Modern Scientific Instruments, 2012, (2):114-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201202031.htm
    [34] 谢尧生, 夏桂清.旋转粘度计圆筒尺寸对粘度测试的影响[J].硅酸盐通报, 1984, (1):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198401006.htm

    Xie Y S, Xia G Q. Rotational viscometer cylinder size effect on viscosity test[J]. Bulletin of the Chinese Ceramic Society, 1984, (1):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198401006.htm
    [35] Terashima O, Sawada T, Sakai Y, et al. Measurement of wall shear stress by using micro-fabricated sensor[C]//Proceedings of ISEM, Japan, Nagoya University, 2012.
  • 加载中
图(12)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  128
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-02-23
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日