留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MEMS梁膜结构流量传感器设计与实现

陈佩 赵玉龙 田边

陈佩, 赵玉龙, 田边. MEMS梁膜结构流量传感器设计与实现[J]. 实验流体力学, 2017, 31(2): 34-38. doi: 10.11729/syltlx20170001
引用本文: 陈佩, 赵玉龙, 田边. MEMS梁膜结构流量传感器设计与实现[J]. 实验流体力学, 2017, 31(2): 34-38. doi: 10.11729/syltlx20170001
Chen Pei, Zhao Yulong, Tian Bian. Design and development of MEMS based beam-membrane structure flow sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 34-38. doi: 10.11729/syltlx20170001
Citation: Chen Pei, Zhao Yulong, Tian Bian. Design and development of MEMS based beam-membrane structure flow sensor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 34-38. doi: 10.11729/syltlx20170001

MEMS梁膜结构流量传感器设计与实现

doi: 10.11729/syltlx20170001
详细信息
    通讯作者:

    陈佩 (1989-), 男, 陕西西安人, 博士, 讲师。研究方向:MEMS传感器设计与制造。通信地址:陕西省西安市南二环路中段 (710064)。E-mail:chdchenpei@chd.edu.cn

  • 中图分类号: TH814

Design and development of MEMS based beam-membrane structure flow sensor

  • 摘要: 流量是工业检测重要参数之一。流量检测技术随着微机械电子系统(MEMS)技术的发展与应用,向着小型化、高精度、智能化的方向发展。基于MEMS技术设计了一种梁膜结合的压差式流量传感器结构,分析了其基本工作原理,采用硅微加工工艺对传感器进行了流片加工,然后对封装完成的传感器样机进行了气流和水流静态性能测试。气流测试灵敏度为0.3508mV/(ms-12,测试基本精度为0.5885%FS;水流测试灵敏度为41.5241mV/(ms-12,测试基本精度为0.9323%FS。结果表明,所设计传感器具有较高的灵敏度与基本精度,从而能完成流量信号的检测。
  • 图  1  传感器芯片结构 (单位:mm)

    Figure  1.  Structure of the sensor chip (unit: mm)

    图  2  压敏电阻位置及惠斯通电桥

    Figure  2.  Wheatstone bridge

    图  3  芯片微加工工艺流程

    Figure  3.  Process flow of the sensor chip

    图  4  传感器芯片显微照片

    Figure  4.  Fabricated sensor chip

    图  5  封装方案示意图

    Figure  5.  Schematic diagram of the package

    图  6  封装完成的传感器

    Figure  6.  The packaged sensor

    图  7  气流试验图

    Figure  7.  Airflow test

    图  8  气流测试结果

    Figure  8.  Result of airflow test

    图  9  水流试验图

    Figure  9.  Water flow test

    图  10  水流测试结果

    Figure  10.  Result of water flow test

    表  1  传感器标定测试结果

    Table  1.   Result of calibration test

    Air flow test Water flow test
    Environment air water
    Temperature/℃ 20 10
    Supply voltage/V ±5 ±5
    ZERO voltage/mV 52.5 51.28
    Range/(m·s-1) 1.2~30 0.11~3
    Sensitivity/(mV·(ms-1)-2) 0.3508 41.5241
    Nonlinearity/%FS 0.0915 0.2094
    Hysteresis/%FS 0.2536 0.2081
    Repeatability/%FS 0.5231 0.8843
    Basic accuracy/%FS 0.5885 0.9323
    下载: 导出CSV
  • [1] Schena E, Massaroni C, Saccomandi P, et al. Flow measurement in mechanical ventilation:a review[J]. Medical Engineering & Physics, 2015, 37(3):257-264. http://www.academia.edu/13717799/Flow_measurement_in_mechanical_ventilation_A_review
    [2] 蔡武昌.从FLOMEKO 2010看流量测量技术和仪表的发展[J].石油化工自动化, 2011, (05):1-4. doi: 10.3969/j.issn.1007-7324.2011.05.001

    Cai W C. View of flow measurement technology and instrument development from FLOMEKO 2010[J]. Automation in Petro-chemical Industry, 2011, (05):1-4. doi: 10.3969/j.issn.1007-7324.2011.05.001
    [3] Worsfold P J, Clough R, Lohan M C, et al. Flow injection analysis as a tool for enhancing oceanographic nutrient measurements-a review[J]. Analytica Chimica Acta, 2013, 803:15-40. doi: 10.1016/j.aca.2013.06.015
    [4] Nguyen N T. Micromachined flow sensors-a review[J]. Flow Measurement and Instrumentation, 1997, 8(1):7-16. doi: 10.1016/S0955-5986(97)00019-8
    [5] Zhou L X. A review of measurements and numerical studies for the effect of wall roughness on the gas-particle flow behavior[C]. 8th International Symposium on Measurement Techniques for Multiphase Flows, 2014:115-120.
    [6] 彭杰纲, 周兆英, 叶雄英.基于MEMS技术的微型流量传感器的研究进展[J].力学进展, 2005, (03):361-376. doi: 10.3321/j.issn:1000-0992.2005.03.007

    Peng J G, Zhou Z Y, Ye X Y. Progresses on micromachined flow sensors based on mems technology[J]. Advances in Mechanics, 2005, (03):361-376. doi: 10.3321/j.issn:1000-0992.2005.03.007
    [7] Kuo J T W, Yu L, Meng E. Micromachined thermal flow sensors-a review[J]. Micromachines, 2012, 3(3):550-573. http://www.oalib.com/paper/159573
    [8] Nawi M N M, Abd M A, Arshad M R, et al. Review of MEMS flow sensors based on artificial hair cell sensor[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2011, 17(9):1417-1426. doi: 10.1007/s00542-011-1330-y
    [9] Ozaki Y, Ohyama T, Yasuda T, et al. Air flow sensor modeled on wind receptor hairs of insects[J]. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2000:531-536. http://www.oalib.com/references/9041807
    [10] Ma R H, Chou P C, Wang Y H, et al. A microcantilever-based gas flow sensor for flow rate and direction detection[J]. Micro-system Technologies Micro and Nano systems Information Storage and Processing Systems, 2009, 15(8):1201-1205. http://www.oalib.com/paper/4086488
    [11] Richter M, Wackerle M, Woias P, et al. A novel flow sensor with high time resolution based on differential pressure principle[C]. MEMS 99:Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, New York, 1999:118-123.
    [12] Chen P, Zhao Y L, Tian B A, et al. Design and fluid-structure interaction analysis of a micromachined cantilever-based differential pressure flow sensor[J]. Micro & Nano Letters, 2014, 9(10):650-654.
    [13] Chen P, Zhao Y L, Li Y Y. Design, simulation and fabrication of a micromachined cantilever-based flow sensor[C]. 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2013:681-684.
    [14] Fitzpatrick JAJ, Inouye Y, Manley S, et al. From "there's plenty of room at the bottom" to seeing what is actually there[J]. Chemphyschem, 2014, 15(4):547-549. doi: 10.1002/cphc.201400097
    [15] Stylios G K. There is plenty of room at the bottom, RP Feynman[J]. International Journal of Clothing Science and Technology, 2013, 25(5):336-337. http://www.nanoparticles.org/pdf/Feynman.pdf
    [16] SD S. MEMS materials and processes handbook[M]. New York:Springer, 2011.
    [17] Erdmann A, Liang R G, Sezginer A, et al. Advances in lithography:introduction to the feature[J]. Applied Optics, 2014, 53(34):L1-L2.
    [18] Mendaros R G, Marcelo M T. ICP-RIE platinum (Pt) sputter etching[C]. 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2014:114-117.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  203
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 修回日期:  2017-02-24
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日