留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀地貌的平屋面建筑风荷载特性研究

陈波 杜坤 杨庆山

陈波, 杜坤, 杨庆山. 非均匀地貌的平屋面建筑风荷载特性研究[J]. 实验流体力学, 2017, 31(3): 46-51, 59. doi: 10.11729/syltlx20160213
引用本文: 陈波, 杜坤, 杨庆山. 非均匀地貌的平屋面建筑风荷载特性研究[J]. 实验流体力学, 2017, 31(3): 46-51, 59. doi: 10.11729/syltlx20160213
Chen Bo, Du Kun, Yang Qingshan. Wind pressure on flat roof building in heterogeneous terrain[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 46-51, 59. doi: 10.11729/syltlx20160213
Citation: Chen Bo, Du Kun, Yang Qingshan. Wind pressure on flat roof building in heterogeneous terrain[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 46-51, 59. doi: 10.11729/syltlx20160213

非均匀地貌的平屋面建筑风荷载特性研究

doi: 10.11729/syltlx20160213
基金项目: 

国家自然科学基金项目 51378059

北京市科技新星计划 Z151100000315051

高等学校学科创新引智计划项目 B13002

详细信息
    作者简介:

    杜坤:陈波(1979-), 男, 湖北黄冈人, 教授, 博导。研究方向:结构风工程。通信地址:北京市海淀区上园村3号北京交通大学238室(100044)。E-mail:chenbohrb@163.com

    通讯作者:

    陈波, E-mail:chenbohrb@163.com

  • 中图分类号: TU317+.9

Wind pressure on flat roof building in heterogeneous terrain

  • 摘要: 通过风洞测压试验,研究单个平屋面建筑物在两类均匀地貌,以及非均匀地貌边界层内的屋面风压分布变化规律。研究结果表明:均匀粗糙地貌下的屋面平均风压系数和脉动风压系数大于均匀平坦地貌,且脉动风压系数差别更显著;从粗糙地貌变化为平坦地貌的非均匀地貌中,用建筑物位置处动压无量纲化时,随着距地貌变化点的距离增大,平均风压系数变化较小,脉动风压系数逐渐减小且变化显著;用上游粗糙地貌动压无量纲化时,随着距地貌变化点的距离增大,屋面迎风分离区平均风压变化较小,迎风下游风压幅值增大,脉动风压幅值略有减小,但在过渡边界层范围内均变化较小;屋面整体平均风荷载的主要影响因素是来流动压变化。
  • 图  1  屋面测压点布置

    Figure  1.  Arrangement of pressure taps

    图  2  试验照片

    Figure  2.  Experimental photo

    图  3  地貌和模型布置

    Figure  3.  Arrangement of building and terrain

    图  4  粗糙地貌平均风速和湍流度

    Figure  4.  Mean velocity and turbulence intensity in rough terrain

    图  5  非均匀地貌平均风速和湍流度

    Figure  5.  Mean velocity and turbulence intensity in heterogeneous terrain

    图  6  典型高度处平均风速和湍流度

    Figure  6.  Mean velocity and turbulence intensity at typical heights

    图  7  粗糙均匀地貌下的风压系数

    Figure  7.  Wind pressure coefficients in rough terrain

    图  8  两类均匀地貌下的风压系数

    Figure  8.  Pressure coefficients of two uniform terrains

    图  9  屋面整体平均风压系数

    Figure  9.  Mean pressure coefficient of the whole roof

    图  10  屋面中心断面测点平均风压系数

    Figure  10.  Mean pressure coefficients of roof center section

    图  11  屋面中心断面测点均方根风压系数

    Figure  11.  RMS pressure coefficients of roof center section

    图  12  非均匀地貌屋面整体平均风压系数

    Figure  12.  Mean pressure coefficient of whole roof in heterogeneous terrain

  • [1] Logan E, Fichtl G H. Rough-to-smooth transition of an equilibrium neutral constant stress layer[J]. Boundary-Layer Meteorology, 1975, 8(3): 525-528. doi: 10.1007/BF02153569
    [2] Deaves D M. Terrain-dependence of longitudinal R. M. S. velocities in the neutral atmosphere[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 8(3): 259-274. doi: 10.1016/0167-6105(81)90025-8
    [3] Porté-Agel M A F. A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions [J]. Journal of Turbulence, 2012, 13(23): 1-18. doi: 10.1080/14685248.2012.695077?src=recsys
    [4] Bradley E F. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness[J]. Quarterly Journal of the Royal Meteorological Society, 1968, 94(401): 361-379. doi: 10.1002/(ISSN)1477-870X
    [5] Wang K. Modeling terrain effects and application to the wind loading of low buildings[D]. Montreal: Concordia University, 2005.
    [6] Lettau H. Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description[J]. Journal of Applied Meteorology and Climatology, 1969, 8(5): 828-832. doi: 10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2
    [7] Sill B L, Fang C. Effect of upstream roughness element distribution on wind loads on low rise structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36: 1289-1297. doi: 10.1016/0167-6105(90)90125-V
    [8] Panofsky H A, Petersen E L. Wind profiles and change of terrain roughness at Risø[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(418): 845-854. http://adsabs.harvard.edu/abs/1972QJRMS..98..845P
    [9] Cao S, Tamura T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(1): 1-19. doi: 10.1016/j.jweia.2005.10.001
    [10] Cao S, Tamura T. Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8): 679-695. doi: 10.1016/j.jweia.2007.01.002
    [11] 刘熙明, 胡非.大气边界层的研究——从均匀到非均匀[J].气象与减灾研究, 2007, 30(2): 44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO200702008.htm

    Liu X M, Hu F. Atmospheric Boundary Layer(ABL) research: from homogeneous to heterogeneous[J]. Meteorology and Disaster Reduction Research, 2007, 30(2): 44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO200702008.htm
    [12] Liu M, Chen X, Yang Q. Characteristics of dynamic pressures on a saddle type roof in various boundary layer flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 150: 1-14. doi: 10.1016/j.jweia.2015.11.012
    [13] Yong C K, Yoshida A, Tamura Y. Characteristics of surface wind pressures on low-rise building located among large group of surrounding buildings[J]. Engineering Structures, 2012, 35: 18-28. doi: 10.1016/j.engstruct.2011.10.024
    [14] 中国建筑科学研究院. GB 50009—2012建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012: 31-33.

    China Academy of Building Research. GB 50009—2012 load code for the design of building structures[S]. Beijing: China Architecture and Building Press, 2012: 31-33.
    [15] ASCE Standard. ASCE 7-10 Minimum design loads for buildings and other structures[S]. American Society of Civil Engineers, 2010: 246-254.
    [16] 陈波, 骆盼育, 杨庆山.测压管道系统频响函数及对风效应的影响[J].振动与冲击, 2014(3): 130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201403025.htm

    Chen B, Luo P Y, Yang Q S. Frequency response function of a pressure measurement pipe system and its effect on structural wind effects[J]. Journal of Vibration and Shock, 2014, 33(3): 130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201403025.htm
  • 加载中
图(12)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  89
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-04-26
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日