留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振幅对流线型箱梁自激气动力的影响

熊龙 王骑 廖海黎 李明水

熊龙, 王骑, 廖海黎, 等. 振幅对流线型箱梁自激气动力的影响[J]. 实验流体力学, 2017, 31(3): 32-37. doi: 10.11729/syltlx20160204
引用本文: 熊龙, 王骑, 廖海黎, 等. 振幅对流线型箱梁自激气动力的影响[J]. 实验流体力学, 2017, 31(3): 32-37. doi: 10.11729/syltlx20160204
Xiong Long, Wang Qi, Liao Haili, et al. Influence of vibration amplitude on motion-induced aerodynamic force of a streamline box girder[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 32-37. doi: 10.11729/syltlx20160204
Citation: Xiong Long, Wang Qi, Liao Haili, et al. Influence of vibration amplitude on motion-induced aerodynamic force of a streamline box girder[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 32-37. doi: 10.11729/syltlx20160204

振幅对流线型箱梁自激气动力的影响

doi: 10.11729/syltlx20160204
基金项目: 

国家重点基础研究发展计划项目 2013CB036301

国家自然科学基金项目 51308478

国家自然科学基金项目 51378442

详细信息
    作者简介:

    熊龙(1983-), 男, 湖北荆门人, 博士研究生。研究方向:大跨度桥梁抗风。通信地址:成都市二环路北一段111号西南交通大学桥梁工程系(610031)。E-mail:xionglong210@126.com

    通讯作者:

    王骑, E-mail:wangchee_wind@swjtu.edu.cn

  • 中图分类号: TU997;U448.27

Influence of vibration amplitude on motion-induced aerodynamic force of a streamline box girder

  • 摘要: 研究了强迫振动振幅对流线型箱梁断面自激气动力的影响。采用1:70的刚性节段模型开展了测压试验,获得了不同迎角的模型断面在不同振幅下的气动压力和分布,探讨了气动力特性。试验中的扭转振幅范围为2°~16°,竖向振幅范围为5~23mm,来流迎角分别为0°和±5°。测试结果表明,在迎角α=0°条件下,当扭转振幅At ≤8°,或竖向约化振幅Av/D≤0.46时,自激气动力的线性谐波占整体气动力的比例在95%以上,没有明显的高次谐波分量。当扭转振幅At > 8°,来流迎角为+5°时,自激气动力的线性谐波比例可降低到75%,高次谐波的比例可达到25%。扭转振幅对颤振导数A2*A3*H2*均存在显著的影响,但竖向振幅仅对H4*存在一定的影响。由此得出,尽管颤振导数随振幅的改变是非线性的,但在一定条件下(如8°扭转角以内),气动力本身不含有明显的高次谐波分量。
  • 图  1  强迫振动法测压风洞试验

    Figure  1.  Wind tunnel measuring pressure test based on forced vibration method

    图  2  断面测点布置图(单位:mm)

    Figure  2.  Layout of section measuring points (unit: mm)

    图  3  不同迎角对应的静风系数

    Figure  3.  Static aerodynamic force coefficients at different angles

    图  4  升力、力矩和位移时程曲线(α=0°, At=2°)

    Figure  4.  History of lift/moment/displacement(α=0°, At=2°)

    图  5  单自由度扭转振动中自激气动力频谱

    Figure  5.  Frequency spectrum of motion-induced aerodynamic force in single-freedom torsional vibration

    图  6  单自由度扭转振动中自激气动力基波幅值比例

    注:“黑色阴影”代表升力,“斜划线”代表力矩

    Figure  6.  First harmonic amplitude proportion of self-excited force in single-freedom torsional vibration

    图  7  单自由度竖向振动中自激气动力频谱分析

    Figure  7.  Frequency spectrum of motion-induced aerodynamic force in single-freedom vertical vibration

    图  8  单自由度竖向振动中模型自激气动力基波幅值比例

    注:“黑色阴影”代表升力,“斜划线”代表力矩

    Figure  8.  First harmonic amplitude proportion of motion-induced aerodynamic force in single-freedom vertical vibration

    图  9  单自由度振动中自激气动力曲线拟合

    Figure  9.  Fitting curve of motion-induced aerodynamic force in single-freedom torsional vibration

    图  10  单自由度振动中不同振幅对应的颤振导数

    Figure  10.  Amplitude vs flutter derivative in single-freedom vibration

  • [1] Scanlan R H, Tomko J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, ASCE, 1971, 97(6): 1717-1737. http://ci.nii.ac.jp/naid/10007251889
    [2] Bocciolone M, Cheli F, Curami A, et al.Wind measurements on the humber bridge and numerical simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 165-173. http://linkinghub.elsevier.com/retrieve/pii/0167610592901473
    [3] Falco M, Curami A, Zasso A. Nonlinear effects in sectional model aeroelastic parameters identification[J].Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 1321-1332. http://www.doc88.com/p-9032353319928.html
    [4] Diana G, Resta F, Zasso A, et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the messina suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92: 441-462. doi: 10.1016/j.jweia.2004.01.005
    [5] Diana G, Resta F, Rocchi D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 1871-1884. doi: 10.1016/j.jweia.2008.02.052
    [6] Diana G, Rocchi D, Argentini T, et al. Aerodynamic instability of a bridge deck section model: Linear and nonlinear approach to force modeling[J].Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 363-374. doi: 10.1016/j.jweia.2010.01.003
    [7] Diana G, Rocchi D, Argentini T. An experimental validation of a band superposition model of the aerodynamic forces acting on multi-box deck sections[J].Journal of Wind Engineering and Industrial Aerodynamics, 2013, 113: 40-58. doi: 10.1016/j.jweia.2012.12.005
    [8] 陈政清, 于向东.大跨桥梁颤振自激力的强迫振动法研究[J].土木工程学报, 2002, 35(5): 34-41. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200205007.htm

    Chen Z Q, Yu X D. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5): 34-41. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200205007.htm
    [9] Liao H L, Wang Q, Li M S, et al. Aerodynamic hysteresis effects of thin airfoil and streamline box girder under large amplitude oscillation[C]//Proceedings of the ICWE 13, Amsterdam: Multi-Science Publishing Co Ltd, 2011.
    [10] 王骑, 廖海黎, 李明水, 等.桥梁断面非线性自激气动力经验模型[J].西南交通大学学报, 2013, 48(2): 271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201302014.htm

    Wang Q, Liao H L, Li M S, et al. Empirical mathematical model for nonlinear motion-induced aerodynamic force of bridge girder[J]. Journal of Southwest Jiaotong University, 2013, 48(2): 271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201302014.htm
    [11] Matsunmoto M, Shiraishi N, Shirato H, et al. Aerodynamic derivatives of coupled/hybrid flutter of fundamental structural sections[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 575-584. doi: 10.1016/0167-6105(93)90051-O
    [12] Noda M, Utsunomiya H, Nagao F, et al. Effects of oscillation amplitude on aerodynamic derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 101-111. doi: 10.1016/S0167-6105(02)00338-0
    [13] Kareem A, Wu T. Wind induced effects on bluff bodies in turbulent flows: nonstationary, non-Gaussian and nonlinear features[C]. The 7th International Colloquium on Bluff-Body Aerodynamics and Its Application (BBAAVII Keynote), Shanghai, 2012.
    [14] 李文涛. 架设方法对大跨度悬索桥施工阶段颤振稳定性影响研究[D]. 成都: 西南交通大学, 2010.

    Li W T. Study on the influence of construction methods on flutter instability of long span suspension bridges under erection[D]. Chengdu: Southwest Jiaotong University, 2010.
    [15] 王骑, 廖海黎, 李明水, 等.大振幅下薄翼和流线型箱梁的气动迟滞研究[J].实验流体力学, 2013, 27(1): 32-37. http://www.syltlx.com/CN/abstract/abstract10307.shtml

    Wang Q, Liao H L, Li M S, et al. Aerodynamic hysteresis of thin airfoil and streamline box girder under large amplitude oscillation[J]. Journal of Experiment in Fluid Mechanics, 2013, 27(1): 32-37. http://www.syltlx.com/CN/abstract/abstract10307.shtml
    [16] 王骑, 廖海黎, 李明水, 等.大跨度桥梁颤振后稳定性[J].西南交通大学学报, 2013, 48(6): 983-988. http://cdmd.cnki.com.cn/Article/CDMD-10561-2010228135.htm

    Wang Q, Liao H L, Li M S, et al. Aerodynamic stability of long-span bridges in post flutter[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 983-988. http://cdmd.cnki.com.cn/Article/CDMD-10561-2010228135.htm
  • 加载中
图(10)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  93
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-02-22
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日