留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液固两相湍流边界层相干结构的PIV实验研究

赵会灵 孙姣 轩瑞祥 陈文义

赵会灵, 孙姣, 轩瑞祥, 等. 液固两相湍流边界层相干结构的PIV实验研究[J]. 实验流体力学, 2017, 31(6): 29-36. doi: 10.11729/syltlx20160199
引用本文: 赵会灵, 孙姣, 轩瑞祥, 等. 液固两相湍流边界层相干结构的PIV实验研究[J]. 实验流体力学, 2017, 31(6): 29-36. doi: 10.11729/syltlx20160199
Zhao Huiling, Sun Jiao, Xuan Ruixiang, et al. Experimental study of coherent structures in a solid-liquid turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 29-36. doi: 10.11729/syltlx20160199
Citation: Zhao Huiling, Sun Jiao, Xuan Ruixiang, et al. Experimental study of coherent structures in a solid-liquid turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 29-36. doi: 10.11729/syltlx20160199

液固两相湍流边界层相干结构的PIV实验研究

doi: 10.11729/syltlx20160199
基金项目: 

国家自然科学基金项目 11572357

国家自然科学基金青年科学基金项目 11602077

详细信息
    作者简介:

    赵会灵(1990-), 女, 河北石家庄人, 硕士研究生。研究方向:化工过程多相流。通信地址:天津市红桥区光荣道8号河北工业大学300#信箱(300130)。E-mail:zhl_2010@126.com

    通讯作者:

    陈文义, E-mail: cwy63@126.com

  • 中图分类号: O357.5+2

Experimental study of coherent structures in a solid-liquid turbulent boundary layer

  • 摘要: 液固两相湍流是工业和工程中常见的流动状态,研究颗粒—湍流两相之间的作用规律和湍流调制的机理,对有效调控化工过程传热传质具有重要意义。采用粒子图像测速技术(PIV)对液固两相平板湍流边界层进行实验研究,分析在同一来流速度下加入固相颗粒和清水时水平板湍流边界层的平均速度剖面、湍流强度变化情况。通过空间局部平均速度结构函数和相干结构条件采样技术,提取并对比壁湍流相干结构"喷射"和"扫掠"事件的脉动速度、雷诺切应力以及展向涡量的二维空间拓扑形态。发现,同清水工况相比,湍流边界层缓冲层有变薄的趋势,对数律区内移,湍流强度和雷诺切应力均有所增强。相干结构在猝发时,脉动速度增强,雷诺切应力相对增大,展向涡量的发展受到促进,这表明实验中颗粒的存在使得湍流边界层中流体脉动增强,相干结构"喷射"和"扫掠"的强度相应增大,动量和能量的输运增强。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental facility

    图  2  流向平均速度剖面图

    Figure  2.  Profile of the streamwise mean velocity

    图  3  湍流度以及雷诺切应力沿法向位置y+的分布

    Figure  3.  Turbulent intensity and Reynolds shear stress distributions in the wall-normal direction

    图  4  相干结构喷射事件物理量分布云图

    Figure  4.  Contours of physical quantities during ejection events

    图  5  相干结构扫掠事件物理量分布云图

    Figure  5.  Contours of physical quantities during sweep events

  • [1] 岳湘安.液-固两相流基础[M].北京:石油工业出版社, 1996.
    [2] Smith C R, Walker J D A, Haidari A H, et al. On the dynamics of near-wall turbulence[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1991, 336(1641):131-175. doi: 10.1098/rsta.1991.0070
    [3] Gore R A, Crowe C T. Effect of particle size on modulating turbulent intensity[J]. International Journal of Multiphase Flow, 1989, 15(2):279-285. doi: 10.1016/0301-9322(89)90076-1
    [4] Rashidi M, Hetsroni G, Banerjee S. Particle-turbulence interaction in a boundary layer[J]. International Journal of Multiphase Flow, 1990, 16(6):935-949. doi: 10.1016/0301-9322(90)90099-5
    [5] Kaftori D, Hetsroni G, Banerjee S. The effect of particles on wall turbulence[J]. International Journal of Multiphase Flow, 1998, 24(3):359-386. doi: 10.1016/S0301-9322(97)00054-2
    [6] Kulick J D, Fessler J R, Eaton J K. Particle response and turbulence modification in fully developed channel flow[J]. Journal of Fluid Mechanics, 1994, 277:109-134. doi: 10.1017/S0022112094002703
    [7] Sato Y, Hishida K. Transport process of turbulence energy in particle-laden turbulent flow[J]. International Journal of Heat & Fluid Flow, 1996, 17(3):202-210. https://www.sciencedirect.com/science/article/pii/0142727X96000355
    [8] Li J, Wang H, Liu Z, et al. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow[J]. Experiments in Fluids, 2012, 53(5):1385-1403. doi: 10.1007/s00348-012-1364-7
    [9] Tanière A, Oesterlé B, Monnier J C. On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects[J]. Experiments in Fluids, 1997, 23(6):463-471. doi: 10.1007/s003480050136
    [10] Kiger K T, Pan C. Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow[J]. Journal of Turbulence, 2002, 3(10):27-29. http://adsabs.harvard.edu/abs/2002JTurb...3...19K
    [11] 郭福水, 王汉封, 柳朝晖, 等.水平槽道内湍流变动的PTV实验研究[J].工程热物理学报, 2004, 25(4):622-624. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200404025

    Guo F S, Wang H F, Liu Z H, et al. Experimental investigations on turbulence modulation in a horizontal channel flow using PTV[J]. Journal of Engineering Thermophysics, 2004, 25(4):622-624. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200404025
    [12] 余钊圣, 王宇, 邵雪明, 等.中性悬浮大颗粒对湍槽流影响的数值研究[J].浙江大学学报(工学版), 2013, 47(1):109-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007040.htm

    Yu Z S, Wang Y, Shao X M, et al. Numerical studies on effects of neutrally buoyant large particles on turbulent channel flow[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(1):109-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007040.htm
    [13] Pan Y, Banerjee S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids (1994-present), 1996, 8(8):2733-2755. doi: 10.1063/1.869059
    [14] Pan Y, Banerjee S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12):3786-3807. doi: 10.1063/1.869514
    [15] Crowe C T, Gore R A, Troutt T R. Particle dispersion by coherent structures in free shear flows[J]. Particulate Science & Technology, 1985, 3(3):149-158. doi: 10.1080/02726358508906434
    [16] Vinkovic I, Doppler D, Lelouvetel J, et al. Direct numerical simulation of particle interaction with ejections in turbulent channel flows[J]. International Journal of Multiphase Flow, 2011, 37(2):187-197. doi: 10.1016/j.ijmultiphaseflow.2010.09.008
    [17] Pang M J, Wei J J, Yu B. Numerical investigation of phase distribution and liquid turbulence modulation in dilute particle-laden flow[J]. Particulate Science & Technology, 2011, 29(6):554-576. doi: 10.1080/02726351.2010.536304?scroll=top
    [18] 姜楠, 管新蕾, 于培宁.雷诺应力各向异性涡黏模型的层析TRPIV测量[J].力学学报, 2012, 44(2):1037-1042. http://www.cqvip.com/QK/91029X/201202/41251573.html

    Jiang N, Guan X L, Yu P N. Tomographic TRPIV measurement of anisotropic eddy-viscosity model for coherent structure Reynolds Stress[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):1037-1042. http://www.cqvip.com/QK/91029X/201202/41251573.html
    [19] Yang S Q, Nan J. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(10):1863-1872. doi: 10.1007/s11433-012-4887-2
    [20] 姜楠, 于培宁, 管新蕾.湍流边界层相干结构空间拓扑形态的层析TRPIV测量[J].航空动力学报, 2012, 27(5):1113-1121. http://d.wanfangdata.com.cn/Periodical/hkdlxb201205023

    Jiang N, Yu P N, Guan X L. Tomo-TRPIV measurement of coherent structure spatial topology in turbulent boundary layer[J]. Journal of Aerospace Power, 2012, 27(5):1113-1121. http://d.wanfangdata.com.cn/Periodical/hkdlxb201205023
  • 加载中
图(5)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  97
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日