留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡流发生器对高负荷压气机叶栅角区分离影响的实验研究

李仁康 王如根 何成 胡加国 马彩东 黄丹青

李仁康, 王如根, 何成, 等. 涡流发生器对高负荷压气机叶栅角区分离影响的实验研究[J]. 实验流体力学, 2017, 31(6): 22-28, 36. doi: 10.11729/syltlx20160195
引用本文: 李仁康, 王如根, 何成, 等. 涡流发生器对高负荷压气机叶栅角区分离影响的实验研究[J]. 实验流体力学, 2017, 31(6): 22-28, 36. doi: 10.11729/syltlx20160195
Li Renkang, Wang Rugen, He Cheng, et al. Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 22-28, 36. doi: 10.11729/syltlx20160195
Citation: Li Renkang, Wang Rugen, He Cheng, et al. Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 22-28, 36. doi: 10.11729/syltlx20160195

涡流发生器对高负荷压气机叶栅角区分离影响的实验研究

doi: 10.11729/syltlx20160195
基金项目: 

国家自然科学基金 51336011

详细信息
    作者简介:

    李仁康(1992-), 男, 江苏连云港人, 硕士研究生。研究方向:推进系统气动热力理论与工程。通信地址:陕西省西安市灞桥区霸陵路一号(710038)。E-mail:lilu897@163.com

    通讯作者:

    胡加国, E-mail: 2269704648@qq.com

  • 中图分类号: V231.3

Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade

  • 摘要: 涡流发生器能有效控制叶栅通道内的流动分离。为探明涡流发生器对高负荷压气机叶栅角区分离的控制效果,设计了不同周向位置的涡流发生器并进行实验。实验结果表明:涡流发生器通过其产生的尾涡改变通道内的旋涡结构,加强端壁区的低能流体与主流的掺混,抑制角区分离的形成进而达到了改善流动的效果。相对于原型叶栅,在-3°~3°迎角下加入涡流发生器后损失系数降低了5%~14%,气流转折角提高2.49°~3.15°。相对于方案A,涡流发生器远离吸力面0.15倍栅距时,角涡强度增强,气动性能下降;反之,接近吸力面0.15倍栅距时会增加角区额外损失,其流动控制效果较差。
  • 图  1  叶栅和涡流发生器相对位置

    Figure  1.  Relative position of vortex generator and cascade

    图  2  实验装置及测量方案

    Figure  2.  Experiment device and test arrangements

    图  3  边界层总压损失云图和平均总压损失系数径向分布图

    Figure  3.  Boundary layer loss distribution and radial averaged loss coefficient

    图  4  -3°~3°迎角下出口截面总压损失周向平均径向分布图

    Figure  4.  Spanwise averaged loss distribution on Plane M at incidence angle -3° to 3°

    图  5  -3°~3°迎角下70%弦长流向截面总压损失云图及流线图

    Figure  5.  Loss distribution and streamlines on Plane N at incidence angle -3° to 3°

    图  6  -3°~3°迎角下出口截面转折角周向平均径向分布图

    Figure  6.  Spanwise averaged flow turning angle on Plane M at incidence angle -3° to 3°

    图  7  -3°~3°迎角下出口截面轴向速度云图

    Figure  7.  Contours of velocity z-component on plane M at three incidence angles

    图  8  -3°~3°迎角下出口截面周向速度云图及流线图

    Figure  8.  Contours of velocity y-component and streamlines on plane M at -3° incidence angles

    图  9  3种迎角下出口截面总压损失系数周向平均径向分布图

    Figure  9.  Spanwise averaged loss coefficient on plane M at three incidence angles

    图  10  3种迎角下出口截面转折角周向平均径向分布图

    Figure  10.  Spanwise averaged flow turning angle on plane M at different incidence angles

    表  1  叶栅几何参数

    Table  1.   Geometry parameters of the cascade

    Parameters Value
    Chord length(C)/mm 91
    Blade height(L)/mm 150
    Pitch(S)/mm 45
    Solidity(τ=C/S) 2.02
    Aspect ratio(AR=L/C) 1.65
    Outlet angle(β2k)/(°) 96.27
    Stagger angle(γ)/(°) 25
    Camber angle(θ)/(°) 62.81
    下载: 导出CSV

    表  2  原型叶栅和方案A流场参数对比

    Table  2.   Comparision of flow parameters between baseline and config A

    Config Parameters i=-3° i=0° i=3°
    Baseline Loss 0.365 0.436 0.561
    Angle 52.86° 55.16° 57.39°
    A Loss -14.0% -8.1% -5.0%
    Angle +2.63° +2.49° +3.15°
    下载: 导出CSV

    表  3  总压损失系数对比

    Table  3.   Relative magnitude of flow loss coefficient

    Config i=-3° i=0° i=3°
    A 0.341 0.401 0.533
    B +26.7% +9.5% +1.1%
    C +10.8% +9.4% +1.5%
    下载: 导出CSV

    表  4  气流转折角对比

    Table  4.   Relative magnitude of flow turning angle

    Config i=-3° i=0° i=3°
    A 55.50° 57.65° 60.53°
    B -0.56° -1.85° -3.03°
    C -1.17° -1.48° -1.87°
    下载: 导出CSV
  • [1] 刘大响, 程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报, 2002, 28(5):490-496. http://d.wanfangdata.com.cn/Periodical_bjhkhtdxxb200205002.aspx

    Liu D X, Cheng R H. Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5):490-496. http://d.wanfangdata.com.cn/Periodical_bjhkhtdxxb200205002.aspx
    [2] Wennerstrom A J. Highly loaded axial flow compressors:history and current developments[J]. Journal of Turbomachinery, 1990, 112(4):567-578. doi: 10.1115/1.2927695
    [3] Evans S, Hodson H, Hynes T, et al. Flow control in a compressor cascade at high incidence[J]. Journal of Propulsion & Power, 2010, 26(4):828-836. doi: 10.2514/1.48054
    [4] Kerrebrock J L, Reijnen D P, Ziminsky W S. Aspirated compressor[R]. ASME GT1997-525, 1997.
    [5] Evans S, Hodson H, Hynes T, et al. Flow control in a compressor cascade at high incidence[J]. Journal of Propulsion & Power, 2010, 26(4):828-836. doi: 10.2514/1.48054
    [6] Akcayoz E, Vo H D, Mahallati A. Controlling corner stall separation with plasma actuators in a compressor cascade[J]. Journal of Turbomachinery, 2016, 138(8):081008. doi: 10.1115/1.4032675
    [7] Li Y H, Wu Y, Zhou M, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids, 2010, 48(6):1015-1023. doi: 10.1007/s00348-009-0787-2
    [8] Gümmer V, Wenger U, Kau H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[R]. ASME GT2000-0491, 2000. https://www.researchgate.net/publication/245354560_Using_Sweep_and_Dihedral_to_Control_Three-Dimensional_Flow_in_Transonic_Stators_of_Axial_Compressors
    [9] Seinturier E, Lombard J P, Dumas M, et al. Forced response prediction methodology for the design of HP compressors bladed Disks[R]. ASME GT2004-53372, 2004. https://www.researchgate.net/publication/290493077_Forced_Response_Prediction_Methodology_for_the_Design_of_HP_Compressors_Bladed_Disks
    [10] Georg KR ger, Christian Vo, Eberhard Nicke. Theory and application of axisymmetric endwall contouring for compressors[R]. ASME GT2011-45624, 2011. https://www.researchgate.net/publication/225024196_Theory_and_Application_of_Axisymmetric_Endwall_Contouring_for_Compressors
    [11] 吴培根, 王如根, 罗凯, 等.开槽叶片对大转角扩压叶栅性能的影响[J].航空动力学报, 2013, 28(11):2503-2509. http://d.wanfangdata.com.cn/Periodical/hkdlxb201311013

    Wu P G, Wang R G, Luo K, et al. Effect of slotted blade on performance of high-turning angle compressor cascades[J]. Journal of Aerospace Power, 2013, 28(11):2503-2509. http://d.wanfangdata.com.cn/Periodical/hkdlxb201311013
    [12] 王如根, 罗凯, 吴云, 等.一种改进的开槽结构对叶栅性能影响的数值研究[J].空军工程大学学报(自然科学版), 2012, 13(5):1-4, 19. http://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201205002.htm

    Wang R G, Luo K, Wu Y, et al. Numerical research on effect of an improved slot configuration on the flow field characteristics of cascade[J]. Journal of Air Force Engineering University (Natural Science Edition), 2012, 13(5):1-4, 19. http://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201205002.htm
    [13] 胡加国, 王如根, 李坤, 等.跨声速压气机叶尖开槽射流扩稳策略探究[J].推进技术, 2014, 35(11):1475-1481. doi: 10.13675/j.cnki.tjjs.2014.11.006.html

    Hu J G, Wang R G, Li K, et al. Investigation on slot jetting flow method and mechanism of transonic compressor[J]. Journal of Propulsion Technology, 2014, 35(11):1475-1481. doi: 10.13675/j.cnki.tjjs.2014.11.006.html
    [14] Lin J C. Control of turbulent boundary layer separation using micro-vortex generators[R]. AIAA-1999-3404, 1999. doi: 10.2514/6.1999-3404
    [15] Rockenbach R W, Brent J A, Jones B A. Single stage experimental evaluation of compressor blading with slots and vortex generators[R]. NASA CR-72626, 1970.
    [16] Gammerdinger P M. The effects of low-profile vortex generators on flow in a transonic fan-blade cascade[D]. Monterey:Naval Postgraduate School, 1995. doi: 10.2514/6.1996-250
    [17] Chima R V. Computational modeling of vortex generators for turbomachinery[R]. ASME GT2002-30677. https://www.researchgate.net/publication/241831618_Computational_Modeling_of_Vortex_Generators_for_Turbomachinery
    [18] Pesteil A, Cellier D, Domercq O, et al. CREATE:advanced CFD for HPC performance improvement[R]. ASME GT2010-68844. https://www.researchgate.net/publication/267503629_Create_Advanced_CFD_for_HPC_performance_improvement
    [19] 吴培根. 高负荷风扇流动失稳及流动控制方法研究[D]. 西安: 空军工程大学, 2014.

    Wu P G. The research of high-load fan flow separation and flow control schemes[D]. Xi'an:Air Force Engineering University, 2014.
    [20] 吴培根, 王如根, 郭飞飞, 等.涡流发生器对高负荷扩压叶栅性能影响的机理分析[J].推进技术, 2016, 37(1):49-56. http://d.wanfangdata.com.cn/Periodical/tjjs201601007

    Wu P G, Wang R G, Guo F F, et al. Mechanism analysis of effects of vortex generator on high-load compressor cascade[J]. Journal of Propulsion Technology, 2016, 37(1):49-56. http://d.wanfangdata.com.cn/Periodical/tjjs201601007
    [21] 王如根, 胡加国, 佘超, 等.跨声速压气机转子的二次流旋涡结构[J].推进技术, 2015, 36(4):504-512. http://d.wanfangdata.com.cn/Periodical/tjjs201504004

    Wang R G, Hu J G, She C. Research on secondary flow vortex structure in transonic compressor rotor[J]. Journal of Propulsion Technology, 2015, 36(4):504-512. http://d.wanfangdata.com.cn/Periodical/tjjs201504004
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  86
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日