留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究

黄真理 周维虎 曲兆松

黄真理, 周维虎, 曲兆松. 三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究[J]. 实验流体力学, 2017, 31(5): 1-14. doi: 10.11729/syltlx20160173
引用本文: 黄真理, 周维虎, 曲兆松. 三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究[J]. 实验流体力学, 2017, 31(5): 1-14. doi: 10.11729/syltlx20160173
Huang Zhenli, Zhou Weihu, Qu Zhaosong. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 1-14. doi: 10.11729/syltlx20160173
Citation: Huang Zhenli, Zhou Weihu, Qu Zhaosong. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 1-14. doi: 10.11729/syltlx20160173

三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究

doi: 10.11729/syltlx20160173
基金项目: 

国家自然科学基金重大科研仪器研制项目 51427808

详细信息
    作者简介:

    黄真理(1966-), 男, 贵州平坝人, 博士, 教授级高级工程师。研究方向:水力学与河流动力学(环境与生态水力学)、水利工程生态与环境保护。通信地址:北京市海淀区复兴路甲1号A座1226(100038)。E-mail:zhlhuang@263.net

    通讯作者:

    黄真理, E-mail:zhlhuang@263.net

  • 中图分类号: TV149.3

Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument

  • 摘要: 本文介绍了激光诱导荧光(LIF)技术测量水体浓度场、温度场和速度场的基本原理,总结了从一维到三维LIF技术的发展历程,综述了激光诱导荧光(LIF)技术测量水体标量场的关键问题,包括激光器和片光源、荧光物质选择和校正方法,从工程化和产业化的需求出发,提出了基于3DLIF技术的水体三维标量场测量仪器的总体技术方案、技术路线和总体技术指标,并给出了3DLIF的关键技术及其解决方案。
  • 图  1  荧光素钠溶液谱图[1]

    Figure  1.  Fluorescent sodium solution spectra

    图  2  液池中激光诱导荧光示意

    Figure  2.  The laser-induced fluorescence signal of liquid pool

    图  3  液体中荧光素钠的荧光强度随浓度变化[1]

    Figure  3.  The variance of the fluorescence intensity with fluorescent sodium concentration in the liquid

    图  4  不同温度条件下罗丹明B的激发-发射光谱[3]

    Figure  4.  The excitation-emission spectrums of rhodamine B under different temperature conditions

    图  5  罗丹明B的荧光强度随温度线性变化[3]

    Figure  5.  Linear change of rhodamine B fluorescence intensity with temperature

    图  6  激光诱导荧光测量流体技术的发展过程

    Figure  6.  The development process of LIF techniques

    图  7  扇形片光源系统示意图[10]

    Figure  7.  Schematic of fan-type laser-sheet

    图  8  3种片光源扫描系统[15]

    Figure  8.  Three light-scanning systems

    图  9  双振镜3DLIF测量示意[10]

    Figure  9.  Schematic of 3DLIF measurement with double vibrating mirrors

    图  10  罗丹明6G和罗丹明B的激发-发射光谱

    Figure  10.  Excitation-emission spectrums of Rh6G and RhB

    图  11  矩形均匀片光光强分布示意

    Figure  11.  Rectangular uniform light-sheet intensity distribution

    图  12  扇形高斯分布片光源

    Figure  12.  The fan-type light-sheet with Gaussian intensity distribution

    图  13  3DLIF技术测量三维浓度(温度)场技术路线图

    Figure  13.  Roadmap of three dimensional scalar fields measurement by 3DLIF

    图  14  3DLIF标量场测量设备总体框架

    Figure  14.  Overall framework of 3DLIF equipment

    图  15  3DLIF标量场测量设备硬件系统示意图

    Figure  15.  Schematic of 3DLIF hardware system

    图  16  激光片光系统和关键部件

    Figure  16.  Laser-sheet system and its key parts

    图  17  片光源扫描系统设计方案示意图

    Figure  17.  Schematic of laser-sheet scanningsystem design

    图  18  三维重构示意图

    Figure  18.  Schematic of 3D reconstruction

    表  1  3种常见荧光物质的适宜激发波长

    Table  1.   Matched excitation wavelengths of three common fluorescent materials

    荧光物质 激发谱波长/nm[21] 适宜激光波长/nm 测量参量
    最小 最大 峰值
    荧光素钠 430 520 490 460~500 浓度
    罗丹明6G 460 560 530 500~550 浓度
    罗丹明B 460 590 550 525~575 温度
    下载: 导出CSV

    表  2  新型荧光物质

    Table  2.   New fluorescent materials

    序号 荧光物质名称 文献
    1 Carboxy-seminapthorhodafluoror SNARF [22]
    2 Seminaphthofluoresceinor SNAFL
    3 1,4-Dihydroxyphthalonitrile(DHPN)
    4 Hydroxypyrene-1,3,6 trisulfonic acid (HPTS)
    5 Lucifer yellow
    6 Phloxine B
    7 Kiton red
    8 LDS 698(or pyridine 1)
    9 Rhodamine系列:Rhodamine B,Rhodamine 6G,Rhodamine WT,Rhodamine 610,Rhodamine110,Sulforhodamine 640
    10 5(6)-Carboxy-2′, 7′-dichlorofluorescein [1]
    11 Pyrromethene 556 [23]
    12 Alexa dyes(Alexa 350,Alexa 430,Alexa 488,Alexa 532,Alexa 546,Alexa 568,and Alexa 594 dyes) [24]
    下载: 导出CSV

    表  3  仪器总体技术指标

    Table  3.   Overall technical indicators of 3DLIF equipment

    技术指标 精度或范围
    三维测量范围 (0.3~0.5) m×1m×1m
    测量精度 < 10-2ppm(浓度场); < 0.2℃(温度场)
    最大扫描速度 1m/s
    图像分辨率 1280pixel×1024pixel
    满分辨率帧速 500帧/s
    下载: 导出CSV
  • [1] Karasso P S, Mungal M G. PLIF measurements in aqueous flows using the Nd:YAG laser[J]. Experiments in Fluids, 1997, 23(5):382-387. doi: 10.1007/s003480050125
    [2] 陈国珍.荧光分析法[M].北京:科学出版社, 1990.

    Chen G Z. Fluorescence analysis[M]. Beijing:Science Press, 1990.
    [3] 杜闰萍, 刘喆, 程易, 等.平面激光诱导荧光技术用于快速液-液混合过程温度场测量[J].过程工程学报, 2007, 7(5):859-864. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200705004.htm

    Du R P, Liu Z, Cheng Y, et al. Planar laser induced fluorescence technique for rapid liquid-liquid mixing process temperature field measurement[J]. Journal of Process Engineering, 2007, 7(5):859-864. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200705004.htm
    [4] 申功炘, 晋健. LIF喷流混合流浓度场定量测量[J].力学学报, 1992, 24(4):488-492. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199204012.htm

    Shen G X, Jin J. LIF jet mixing flow concentration field quantitative measurement[J]. Journal of Mechanics, 1992, 24(4):488-492. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199204012.htm
    [5] 黄真理, 李玉梁, 余常昭. PLIF技术测量浓度场及其二维数字校正[J].力学学报, 1994, 26(5):616-624. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB405.012.htm

    Huang Z L, Li Y L, Yu C Z. PLIF technique to measure the concentration field and the two-dimensional digital correction[J]. Journal of Mechanics, 1994, 26(5):616-624. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB405.012.htm
    [6] 黄真理, 李玉梁, 余常昭.平面激光诱导荧光技术测量横流中射流浓度场的研究[J].水利学报, 1994, (11):1-7. doi: 10.3321/j.issn:0559-9350.1994.11.001

    Huang Z L, Li Y L, Yu C Z. Planar laser induced fluorescence technique measure transverse jet concentration field in the study[J]. Journal of Hydraulic Engineering, 1994, (11):1-7. doi: 10.3321/j.issn:0559-9350.1994.11.001
    [7] Prasad R R, Sreenivasan K R. Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows[J]. J Fluid Mech, 1990, 216:1-34. doi: 10.1017/S0022112090000325
    [8] Dahm W J A, Southerland K B, Buch K A. Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc》1 molecular mixing in turbulent flows[J]. Physics of Fluids A, 1991, 3(5):1115-1127. doi: 10.1063/1.858093
    [9] Deusch S, Dracos T. Time resolved 3D passive scalarconcentration-field imaging by laser induced fluorescence(LIF)in moving liquids[J]. Meas Sci Technol, 2001, 12(2):188-200. doi: 10.1088/0957-0233/12/2/310
    [10] Tian X D, Roberts P J W. A 3D LIF system for turbulent buoyant jet flows[J]. Experiments in Fluids, 2003, 35(6):636-647. doi: 10.1007/s00348-003-0714-x
    [11] Van Vliet E, Van Bergen S M, Derksen J J, et al. Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in atubular reactor[J]. Experiments in Fluids, 2004, 37(1):1-21. doi: 10.1007/s00348-004-0779-1
    [12] Delo C J, Kelso R M, Smits A J. Three-dimensional structure of a low-Reynolds-number turbulent boundary layer[J]. J Fluid Mech, 2004, 512:47-83. https://www.researchgate.net/profile/Richard_Kelso/publication/231965363_Three-dimensional_structure_of_a_low-Reynolds-number_turbulent_boundary_layer/links/54202eed0cf241a65a1b0d6f.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [13] Sarathi P. A calibration scheme for quantitative concentration measurements using simultaneous PIV and 3DLIF[J]. Experiments in Fluids, 2012, 52:247-259. Doi: 10.1007/s00348-011-1219-7.
    [14] Dahm W J A, Su L K, Southerland K B. A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows[J]. Physics of Fluids A, 1992, 4(10):2191-2206. doi: 10.1063/1.858461
    [15] Crimaldi J P. Planar laser induced fluorescence in aqueous flows[J]. Experiments in Fluids, 2008, 44:851-863. Doi: 10.1007/s00348-008-0496-2.
    [16] Koga D J, Abrahamson S D, Eaton J K. Development of a portable laser sheet[J]. Experiments in Fluids, 1987, 5:215-216. doi: 10.1007/BF00298466
    [17] 唐静, 谢正茂, 何俊华, 等.用于尾流探测的新型片光源[J].光电子·激光, 2012, 23(2):408-412. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201202037.htm

    Tang J, Xie Z M, He J H, et al. New light source to detect wake flow[J]. Journal of Optoelectronics, Lasers, 2012, 23(2):408-412. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201202037.htm
    [18] 唐洪武.现代流动测试技术及应用[M].北京:科学出版社, 2009.

    Tang H W. Modern flow measurement technology and application[M]. Beijing:Science Press, 2009.
    [19] 夏国朝, 陶慧林.罗丹明6G的三维荧光和共振散射光谱[J].光谱实验室, 2008, 25(5):773-777. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS200805002.htm

    Xia G C, Tao H L. Three-dimensional fluorescence and resonance scattering spectral of rhodamine 6G[J]. Journal of Spectroscopy Laboratory, 2008, 25(5):773-777. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS200805002.htm
    [20] Sakakibara J, Hishida K, Maeda M. Measurements of thermally stratified pipe flow using image-processing techniques[J]. Experiments in Fluids, 1993, 16:82-96. doi: 10.1007/BF00944910
    [21] Arcoumanis C, McGuirk J J, Palma J M L. On the use of fluorescent dyes for concentration measurements in water flows[J]. Experiments in Fluids, 1990, 10:177-180. doi: 10.1007/BF00215028
    [22] Coppeta J, Rogers C. Dual emission laser induced fluorescence for direct planar scalar behavior measurements[J]. Experiments in Fluids, 1998, 25:1-15. doi: 10.1007/s003480050202
    [23] Cowen E A, Chang K A, Liao Q. A single-camera coupled PTV-LIF technique[J]. Experiments in Fluids, 2001, 31:63-73. doi: 10.1007/s003480000259
    [24] Nataliya P V, Rosaria P H, Janell B S, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates[J]. J Histochem Cytochem, 1999, 47(9):1179-1188. doi: 10.1177/002215549904700910
    [25] Sakakibara J, Adrian R. Whole field measurement of temperature in water using two-color laser-induced fluorescence[J]. Experiments in Fluids, 1999, 26:7-15. doi: 10.1007/s003480050260
    [26] Hishida K, Sakakibara J. Combined planar laser-induced fluorescence and particle image velocimetry technique for velocity and temperature fields[J]. Experiments in Fluids, 2000, 29:S129-S140. doi: 10.1007/s003480070015
    [27] Kim K S, Choi M S, Lee C H, et al. In-cylinder fuel distribution measurements using PLIF in a SI engine[C]. SAE Special Publications, Detroit, MI, USA, 1997.
    [28] Matthias B, Fabrice G, Fabrice L. Instant aneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF)[J]. Experiments in Fluids, 2005, 38:123-131. Doi: 10.1007/s00348-004-0911-2.
    [29] Kaiser S A, Long M B. Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers[J]. Proc of the Combustion Institute, 2005, 30:1555-1563. doi: 10.1016/j.proci.2004.08.263
    [30] 黄真理, 李玉梁, 余常昭, 等. LIF技术测量浓度场的影响因素分析[J].实验力学, 1994, 9(3):232-240. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX403.007.htm

    Huang Z L, Li Y L, Yu C Z, et al. Factors influencing the concentration field of LIF technology measurement[J]. Journal of Experimental Mechanics, 1994, 9(3):232-240. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX403.007.htm
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  136
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-05-19
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日