留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种智能材料结构在变形体机翼气动特性研究中的应用

雷鹏轩 王元靖 吕彬彬 余立 杨振华

雷鹏轩, 王元靖, 吕彬彬, 等. 一种智能材料结构在变形体机翼气动特性研究中的应用[J]. 实验流体力学, 2017, 31(5): 74-80. doi: 10.11729/syltlx20160166
引用本文: 雷鹏轩, 王元靖, 吕彬彬, 等. 一种智能材料结构在变形体机翼气动特性研究中的应用[J]. 实验流体力学, 2017, 31(5): 74-80. doi: 10.11729/syltlx20160166
Lei Pengxuan, Wang Yuanjing, Lyu Binbin, et al. Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 74-80. doi: 10.11729/syltlx20160166
Citation: Lei Pengxuan, Wang Yuanjing, Lyu Binbin, et al. Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 74-80. doi: 10.11729/syltlx20160166

一种智能材料结构在变形体机翼气动特性研究中的应用

doi: 10.11729/syltlx20160166
详细信息
    作者简介:

    雷鹏轩(1991-), 男, 陕西西安人, 博士研究生。研究方向:实验空气动力学。通信地址:四川省绵阳市北川101信箱(622762)。E-mail:leipengxuan@cardc.cn

    通讯作者:

    雷鹏轩, E-mail:leipengxuan@cardc.cn

  • 中图分类号: V224

Application of a smart material structure in the study of aerodynamic characteristics of a morphing wing

  • 摘要: 为验证所提出的智能材料结构在柔性变后缘机翼气动特性研究中应用的可行性,在跨声速风洞中运用模型变形视频测量技术测量了机翼后缘的偏转变形量,并记录了偏转变形的动态过程。同时测量了上翼面的压力分布。实验马赫数0.4~0.8,模型迎角0°~6°。分析了来流条件对结构变形能力的影响。结果表明:跨声速条件下,智能材料结构在气动载荷作用下能够驱动机翼后缘偏转变形。驱动力一定时,变形能力受到马赫数和迎角等因素影响。马赫数增加会减弱智能材料结构的变形能力,导致变形速度减小,后缘偏转角降低。迎角的影响较为复杂,且与马赫数的影响相互耦合,马赫数越高迎角的影响越强。最后,通过对后缘压力分布形态的分析得出,变形后后缘是否发生流动分离是影响智能材料结构变形能力的关键因素。
  • 图  1  SWP计划风洞试验与模型照片

    Figure  1.  SWP program wind tunnel test and model photo

    图  2  连续可变弯度后缘襟翼试验照片

    Figure  2.  The test photo of variable camber continuous trailing edge flap

    图  3  后缘偏转原理图

    Figure  3.  Trailing edge deflection principle diagram

    图  4  模型装配示意图

    Figure  4.  Schematic diagram of model assembly

    图  5  机翼剖面

    Figure  5.  Photo of the model's wing section

    图  6  测量现场照片

    Figure  6.  Photo of measurement setup

    图  7  三坐标机测量结果

    Figure  7.  Three coordinate measuring results

    图  8  模型在风洞中安装图

    Figure  8.  Model in the wind tunnel

    图  9  单相机VMD测量系统架构

    Figure  9.  Single camera VMD measurement system

    图  10  上翼面VMD标记点位置示意图

    Figure  10.  Position of the upper wing's VMD mark point

    图  11  后缘偏转角计算示意图

    Figure  11.  Calculation sketch of trailing edge deflection angle

    图  12  Ma=0.4后缘偏转角分布测量结果

    Figure  12.  Measurement results of trailing edge deflection angle when Ma=0.4

    图  13  Ma=0.5后缘偏转角分布测量结果

    Figure  13.  Measurement results of trailing edge deflection angle when Ma=0.5

    图  14  Ma=0.6后缘偏转角分布测量结果

    Figure  14.  Measurement results of trailing edge deflection angle when Ma=0.6

    图  15  Ma=0.7后缘偏转角分布测量结果

    Figure  15.  Measurement results of trailing edge deflection angle when Ma=0.7

    图  16  Ma=0.8后缘偏转角分布测量结果

    Figure  16.  Measurement results of trailing edge deflection angle when Ma=0.8

    图  17  α=2°后缘偏转角分布测量结果

    Figure  17.  The measurement results of the angle distribution when α=2°

    图  18  α=2°后缘偏转角速度测量结果

    Figure  18.  The measurement results of the angular velocity of deflection when α=2°

    图  19  最大后缘偏转角测量结果

    Figure  19.  Measurement results of maximum trailing edge deflection angle

    图  20  Ma=0.5变形前后压力分布对比

    Figure  20.  Comparison of pressure distribution before and after deformation when Ma=0.5

    图  21  Ma=0.7变形前后压力分布对比

    Figure  21.  Comparison of pressure distribution before and after deformation when Ma=0.7

    表  1  试验状态表

    Table  1.   Test condition

    流场参数 数值
    Ma 0.4 0.5 0.6 0.7 0.8
    AOA/(°) 0°、2°、4°、6°
    Re/106 1.27 1.54 1.81 2.11 2.32
    Dynamic pressure/Pa 9891 14619 20143 26532 32258
    下载: 导出CSV
  • [1] Wlezien R W, Horner G C, McGowan A M R, et al. Aircraft morphing program[C]//5th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 1998:176-187.
    [2] Kudva J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4):261-267. doi: 10.1177/1045389X04042796
    [3] Kudva J N, Jardine A P, Martin C A, et al. Overview of the ARPA/WL smart structures and materials development-smart wing contract[C]//1996 Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 1996:10-16.
    [4] Martin C A, Jasmin L, Flanagan J, et al. Smart wing wind tunnel model design[C]//Proc SPIE, 1997, 3044:41-47.
    [5] Scherer L B, Martin C A, Appa K, et al. Smart wing wind tunnel test results[C]//Smart Structures and Materials'97, International Society for Optics and Photonics, 1997:56-66.
    [6] Scherer L B, Martin C A, West M N, et al. DARPA/ARFL/NASA Smart Wing second wind tunnel test results[C]//1999 Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 1999:249-259.
    [7] Precup N, Mor M, Livne E. Design, construction, and tests of an aeroelastic wind tunnel model of a variable camber continuous trailing edge flap (VCCTEF) concept wing[R]. AIAA-2014-2442, 2014.
    [8] Precup N, Mor M, Livne E. The design, construction, and tests of a concept aeroelastic wind tunnel model of a high-lift variable camber continuous trailing edge flap (HL-VCCTEF) wing configuration[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015. doi:10.2514/6.2015-1406.
    [9] Ting E, Dao T, Nguyen N. Aerodynamic load analysis of a variable camber continuous trailing edge flap system on a flexible wing aircraft[C]//56th AIAA/ASCE/AHS/ASC Struc-tures, Structural Dynamics, and Materials Conference, 2015. doi:10.2514/6.2015-1839.
    [10] 陶宝祺.智能材料结构[M].北京:国防工业出版社, 1997.

    Tao B Q. Intelligent material structure[M]. Beijing:National Defence Industry Press, 1997.
    [11] Icardi U, Ferrero L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators[J]. Materials & Design, 2009, 30(10):4200-4210. https://www.researchgate.net/publication/223715078_Preliminary_study_of_an_adaptive_wing_with_shape_memory_alloy_torsion_actuators
    [12] Brailovski V, Terriault P, Georges T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10(12):197-203. https://www.researchgate.net/profile/Daniel_Coutu2/publication/251709682_SMA_Actuators_for_Morphing_Wings/links/561e6d1908aecade1accb598/SMA-Actuators-for-Morphing-Wings.pdf
    [13] Coutu D, Brailovski V, Terriault P. Optimized design of an active extrados structure for an experimental morphing laminar wing[J]. Aerospace Science & Technology, 2010, 14(7):451-458. https://www.researchgate.net/publication/222536394_Optimized_design_of_an_active_extrados_structure_for_an_experimental_morphing_laminar_wing
    [14] 陈钱, 白鹏, 尹维龙, 等.可连续光滑偏转后缘的变弯度翼型气动特性分析[J].空气动力学学报, 2010, 28(1):46-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm

    Chen Q, Bai P, Ying W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm
    [15] 杨媛, 徐志伟.基于SMA的飞行器变体机翼驱动结构研究[J].兵器材料科学与工程, 2010, 33(1):25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201001014.htm

    Yang Y, Xu Z W. Research of the wing structure based on a shape-memory alloy actuated morphing wing[J]. Ordnance Material Science and Engineering, 2010, 33(1):25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201001014.htm
    [16] 刘俊兵, 王帮峰, 芦吉云, 等.基于SMA的差动式变体机翼后缘驱动器研究[J].兵器材料科学与工程, 2015, 38(4):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201504005.htm

    Liu J B, Wang B F, Lu J Y, et al. Differential SMA actuator in trailing edge of morphing wing[J]. Ordnance Material Science and Engineering. 2015, 38(4):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201504005.htm
    [17] Burner A W, Liu T. Videogrammetric model deformation measurement technique[J]. Journal of Aircraft, 2001, 38(4):745-754. doi: 10.2514/2.2826
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  102
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-01
  • 修回日期:  2017-01-14
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日