留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AFM胶体探针测量液固界面DLVO力及表面电势

田维芳 郑旭 李战华 徐征

田维芳, 郑旭, 李战华, 等. 基于AFM胶体探针测量液固界面DLVO力及表面电势[J]. 实验流体力学, 2017, 31(4): 16-21. doi: 10.11729/syltlx20160163
引用本文: 田维芳, 郑旭, 李战华, 等. 基于AFM胶体探针测量液固界面DLVO力及表面电势[J]. 实验流体力学, 2017, 31(4): 16-21. doi: 10.11729/syltlx20160163
Tian Weifang, Zheng Xu, Li Zhanhua, et al. Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 16-21. doi: 10.11729/syltlx20160163
Citation: Tian Weifang, Zheng Xu, Li Zhanhua, et al. Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 16-21. doi: 10.11729/syltlx20160163

基于AFM胶体探针测量液固界面DLVO力及表面电势

doi: 10.11729/syltlx20160163
基金项目: 

自然科学基金项目 11202219

辽宁省教育厅重点实验室基础研究项目 LZ2014005

详细信息
    作者简介:

    田维芳(1993-), 女, 河南新乡人, 硕士研究生。研究方向:液固界面双电层内表面电势测量及调制研究。通信地址:辽宁省大连市甘井子区凌工路2号大连理工大学机械东楼(116024)。E-mail:tianweifang1993@163.com

    通讯作者:

    郑旭, E-mail:zhengxu@lnm.imech.ac.cn

  • 中图分类号: O363.2;O363.9

Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces

  • 摘要: 表面电势是微纳流控芯片中流体流动的重要参数。本文介绍了基于AFM胶体探针技术测量液固界面DLVO力并进一步测量表面电势及表面电荷密度的方法。本文改进了胶体探针制作的技术手段,并提出用双探针法测量胶体探针的弹性系数。在0.1~1mM浓度范围内的NaCl溶液中,测量了硅、二氧化硅和氮化硅液固界面双电层内的DLVO力及表面电势。实验结果表明胶体探针技术可以很好地测量液固界面的DLVO力,尤其对静电力指数变化段非常敏感。通过DLVO力曲线可以间接测量表面电势、表面电荷密度等重要参数,是微纳流动及界面属性测量的有效手段。此外,在不同硅基材料表面的测量结果显示了硅烷醇基密度对表面电势起主导作用,可以通过选用不同硅烷醇基密度的材料来有效调控表面电势,从而在硅基材料制作的微流控芯片中调控电动流动的强弱。
  • 图  1  AFM液下工作原理示意图

    Figure  1.  AFM work principle sketch maps in fluid

    图  2  AFM扫描小球形貌图

    Figure  2.  Sphere surface topography obtained from AFM

    图  3  胶体探针制作步骤

    Figure  3.  The fabrication procedure of colloidal probe

    图  4  双探针法测胶体探针弹性系数示意图

    Figure  4.  Schematic of measuring colloidal probe spring constant based on cantilever to cantilever device

    图  5  二氧化硅基底上胶体探针在4种不同浓度氯化钠溶液下的对数坐标力曲线,黑线为连续电势假设下的PB方程拟合线

    Figure  5.  Force curves between the colloidal probe and silica in different NaCl concentrations. The black curves are fitted based on PB equation under the assumption of constant potential

    图  6  二氧化硅表面电势测量结果(红点)及与Ducker(圆圈)和Horn(矩形)在相似测量环境下的结果比较。pC=-lgC(C为溶液浓度)

    Figure  6.  Comparison of the surface potential on silica (red symbols) between Duckers' (circles) and Horns' (squares) under similar experiment conditions. pC=-lgC.(C is concentration)

    图  7  硅、二氧化硅和氮化硅表面电势对比

    Figure  7.  Comparison of surface potentials on silicon, silica and silicon nitride

    表  1  不同氯化钠浓度下的电导率与德拜长度对照表

    Table  1.   Conductivity and Debye length in different NaCl solutions

    Conductivity(μs·cm-1) Concentration/mM Theoretical κ-1/nm Experimental κ-1/nm
    11.2 0.09 30 28
    35.4 0.28 17 19
    94.1 0.76 11 12
    115.2 0.93 10 9
    下载: 导出CSV
  • [1] Israelachvili J N. Intermolecular and surface forces[M]. Academic Press, 2011.
    [2] 李战华, 吴健康, 胡国庆等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.

    Li Z H, Wu J K, Hu G Q, et al. Fluid flow in microfluidic chips[M]. Beijing:Science Press, 2012.
    [3] 林炳承, 秦建华.图解微流控芯片实验室[M].北京:科学出版社, 2008.

    Lin B C, Qin J H. Graphic laboratory on a microfluidic chip[M]. Beijing:Science Press, 2008.
    [4] Kirby B J, Hasselbrink E F. Zeta potential of microfluidic substrates:Theory, experimental techniques, and effects on separations[J]. Electrophoresis, 2004, 25(2):187-202. doi: 10.1002/(ISSN)1522-2683
    [5] Schoch R, Han J, Renaud P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883. doi: 10.1103/RevModPhys.80.839
    [6] Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope:technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1-6):1-152. doi: 10.1016/j.surfrep.2005.08.003
    [7] Audry M C, Piednoir A, Joseph P, et al. Amplification of electro-osmotic flows by wall slippage:direct measurements on OTS surfaces[J]. Faraday Discussions, 2010, 146(146):113-124. http://www.ncbi.nlm.nih.gov/pubmed/21043417
    [8] 郝旭欢, 常博, 郝旭丽. MEMS传感器的发展现状及应用综述[J].无线互联科技, 2016, 3:95-96. doi: 10.3969/j.issn.1672-6944.2016.03.042

    Hao X H, Chang B, Hao X L. Current development and application of MEMS sensors[J]. Wireless Internet Technology, 2016, 3:95-96. doi: 10.3969/j.issn.1672-6944.2016.03.042
    [9] Horn R G, Vinogradova O I, Mackay M E, et al. Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer[J]. Journal of Chemical Physics, 2000, 112(14):6424-6433. doi: 10.1063/1.481274
    [10] Van Zwol P J, Palasantzas G, Van de Schootbrugge M, et al. Roughness of microspheres for force measurements[J]. Langmuir, 2008, 24(14):7528-7531. doi: 10.1021/la800664f
    [11] Sader J E, Larson I, Mulvaney P, et al. Method for the calibration of atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1995, 66(7):3789-3798. doi: 10.1063/1.1145439
    [12] Butt H J, Jaschke M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6(1):1-7. doi: 10.1088/0957-4484/6/1/001
    [13] Sader J E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of Applied Physics, 1998, 84(1):64-76. doi: 10.1063/1.368002
    [14] Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10):3967-3969. doi: 10.1063/1.1150021
    [15] Cleveland J P, Manne S, Bocek S, et al. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy[J]. Review of Scientific Instruments, 1993, 64(2):403-405. doi: 10.1063/1.1144209
    [16] Kuznetsov V, Papastavrou G. Ion adsorption on modified electrodes as determined by direct force measurements under potentiostatic control[J]. The Journal of Chemical Physics C, 2014, 118(5):2673-2685. doi: 10.1021/jp500425g
    [17] Ducker W A, Senden T J, Pashley R M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature, 1991, 353(353):239-241. http://cat.inist.fr/?aModele=afficheN&cpsidt=4998932
    [18] Horn R G, Smith D T. Measuring surface forces to explore surface chemistry:Mica, sapphire and silica[J]. Journal of Non-Crystalline Solids, 1990, 120(1-3):72-81. doi: 10.1016/0022-3093(90)90192-O
    [19] Legrand P A. The surface properties of silicas[J]. International Journal of Food Science & Technology, 2015, 50(4):966-973. http://ci.nii.ac.jp/ncid/BA35783269
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  212
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-31
  • 修回日期:  2017-01-09
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日