留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击射流火焰流场的LDV实验研究

方元祺 李林 钟亮 俞瑜 蔡国汉 陈恺熙 陈蛟 王高峰

方元祺, 李林, 钟亮, 等. 冲击射流火焰流场的LDV实验研究[J]. 实验流体力学, 2019, 33(1): 79-88. doi: 10.11729/syltlx20160161
引用本文: 方元祺, 李林, 钟亮, 等. 冲击射流火焰流场的LDV实验研究[J]. 实验流体力学, 2019, 33(1): 79-88. doi: 10.11729/syltlx20160161
Fang Yuanqi, Li Lin, Zhong Liang, et al. Experimental study of the flow fields of the impinging jet flames using Laser Doppler Velocimetry (LDV)[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 79-88. doi: 10.11729/syltlx20160161
Citation: Fang Yuanqi, Li Lin, Zhong Liang, et al. Experimental study of the flow fields of the impinging jet flames using Laser Doppler Velocimetry (LDV)[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 79-88. doi: 10.11729/syltlx20160161

冲击射流火焰流场的LDV实验研究

doi: 10.11729/syltlx20160161
基金项目: 

国家自然科学基金项目 91541108

中央高校基本科研业务费资助项目 2017FZA4032

详细信息
    作者简介:

    方元祺(1995-), 男, 云南玉溪人, 硕士研究生。研究方向:燃烧诊断和流场测量、燃烧室与涡轮耦合作用。通信地址:浙江省杭州市西湖区浙江大学玉泉校区航空航天学院(310027)。E-mail:yqfang@zju.edu.cn

    通讯作者:

    王高峰, E-mail: gfwang@zju.edu.cn

  • 中图分类号: O353.5

Experimental study of the flow fields of the impinging jet flames using Laser Doppler Velocimetry (LDV)

  • 摘要: 搭建了基于激光多普勒测速仪(LDV)的冲击射流火焰流场实验平台,开发了固态粒子发生器、粒子回收装置和精密位移机构等装置,对单孔喷嘴(功率200W)、同轴喷嘴(功率1200W)的自由射流火焰流场和冲击射流火焰流场进行高精度测量,测量数据具有较高的准确性和可重复性。在冲击射流模式下,利用多个位置点的平均速度分量测量值进行流场重构,获得了冲击射流火焰流场基本特征。实验发现:在靠近冲击壁面区域距中心滞止点约1倍喷嘴直径处出现水平方向速度峰值,该点处可能会形成短冲击距离下换热强度的第二次峰值。在同轴射流工况中,外环同轴射流和中心射流间存在一个内部剪切混合层:在自由射流火焰模式下,该混合层随着射流的发展而耗散;在冲击射流火焰模式下,由于受到滞止区的作用,混合层向外扩张。
  • 图  1  冲击射流火焰流场LDV测量实验平台示意图

    Figure  1.  Setup of LDV experimental platform for vertical flow burner

    图  2  喷口与冲击壁面尺寸示意图

    Figure  2.  Schematic diagram of exit nozzle and impinging wall

    图  3  旋流流化床固体粒子发生器示意图

    Figure  3.  Schematic diagram of a fluidized-bed solid particle generator with swirling flow

    图  4  4种测量工况对应的火焰形态

    Figure  4.  Photographs of LPG/air flames

    图  5  火焰流场LDV测量现场图

    Figure  5.  LDV measurements for flame flow

    图  6  Case-L中心线上不同高度竖直方向脉动速度随样本数的变化

    Figure  6.  An evaluation of the sampling uncertainty in the measurements of the vertical fluctuating velocities at different heights along centerline in Case-L

    图  7  Case-L测量点P1(0, 15)(左)、P2(0, 60)(右)竖直方向的平均速度、脉动速度和数据点数随最低信噪比阈值的变化

    Figure  7.  An evaluation of the minimum signal to noise ratio uncertainty in the measurements at two points: P1 (0, 15) (left)、P2 (0, 60) (right) in Case-L

    图  8  4种工况下喷口附近速度沿径向的分布(高度H=3mm)

    Figure  8.  Mean velocity distribution near nozzle in four cases (Height=3mm)

    图  9  4种工况下平均速度沿中心线的分布

    Figure  9.  Mean velocity distribution along centerline in four cases

    图  10  4种工况下脉动速度沿中心线的分布

    Figure  10.  RMS velocity distribution along centerline in four cases

    图  11  Case-L不同高度的竖直方向平均速度沿径向的分布

    Figure  11.  Vertical mean velocity distribution at different heights in Case-L

    图  12  Case-LP不同高度的水平方向平均速度沿径向的分布

    Figure  12.  Horizontal mean velocity distribution at different heights in Case-LP

    图  13  Case-LP不同高度的竖直方向平均速度沿径向的分布

    Figure  13.  Vertical mean velocity distribution at different heights in Case-LP

    图  14  Case-LP流场重构平均速度分布云图及测试点矢量图

    Figure  14.  Contour and vector of mean velocity in Case-LP

    图  15  Case-H不同高度的竖直方向平均速度沿径向的分布

    Figure  15.  Vertical mean velocity distribution at different heights in Case-H

    图  16  Case-HP不同高度的竖直方向平均速度沿径向的分布

    Figure  16.  Vertical mean velocity distribution at different heights in Case-HP

    图  17  Case-HP不同高度的水平方向平均速度沿径向的分布

    Figure  17.  Horizontal mean velocity distribution at different heights in Case-HP

    图  18  Case-HP流场重构平均速度分布云图及测试点矢量图

    Figure  18.  Contour and vector of mean velocity in Case-HP

    图  19  Case-L不同高度的竖直方向脉动速度沿径向的分布

    Figure  19.  Vertical RMS velocity distribution at different heights in Case-L

    图  20  Case-LP不同高度的竖直方向脉动速度沿径向的分布

    Figure  20.  Vertical RMS velocity distribution at different heights in Case-LP

    图  21  Case-LP不同高度的水平方向脉动速度沿径向的分布

    Figure  21.  Horizontal RMS velocity distribution at different heights in Case-LP

    图  22  Case-H不同高度的竖直方向脉动速度沿径向的分布

    Figure  22.  Vertical RMS velocity distribution at different heights in Case-H

    图  23  Case-HP不同高度的竖直方向脉动速度沿径向的分布

    Figure  23.  Vertical RMS velocity distribution at different heights in Case-HP

    图  24  Case-HP不同高度的水平方向脉动速度沿径向的分布

    Figure  24.  Horizontal RMS velocity distribution at different heights in Case-HP

    表  1  4种测量工况的实验参数

    Table  1.   Parameters of four cases

    测试工况 火焰功率 冲击壁面 火焰形态 测量范围
    Case-L 200W Fig. 4(a) z: 3~53mm
    r: 0~14mm
    Case-H 1200W Fig. 4(b) z: 3~163mm
    r: 0~30mm
    Case-LP 200W Fig. 4(c) z: 3~17mm
    r: 0~60mm
    Case-HP 1200W Fig. 4(d) z: 3~18mm
    r: 0~80mm
    下载: 导出CSV

    表  2  Case-L的P3(0, 25)、Case-H的P4(0, 45)的测量重复性检验

    Table  2.   Uncertainties in P3 (0, 25) of Case-L and P4 (0, 45) of Case-H

    测量位置点 P3 P4
    实验序号 平均速度 脉动速度 平均速度 脉动速度
    1 2.60467 0.11706 3.43976 0.32658
    2 2.59544 0.12594 3.45659 0.33650
    3 2.60747 0.12279 3.45407 0.33296
    4 2.59643 0.11831 3.44007 0.32099
    5 2.61014 0.12551 3.45831 0.32958
    算术平均值 2.60283 0.12192 3.44976 0.32932
    标准差 0.00659 0.00408 0.00911 0.00595
    极限误差 0.00838 0.00506 0.01133 0.00740
     注:表中数据单位均为m/s。
    下载: 导出CSV

    表  3  喷嘴附近计算参数求解结果

    Table  3.   Calculated results of parameters near nozzle

    测量工况 Case-L Case-LP Case-H Case-HP
    喷嘴直径D/mm 11 11 33 33
    体积流量Q/(ml·s-1) 252 152 2748 2737
    平均速度v/(m·s-1) 2.65 1.60 3.21 3.20
    雷诺数Re 2000 1200 7300 7200
    下载: 导出CSV
  • [1] Kadam A R, Tajik A R, Hindasageri V. Heat transfer distribution of impinging flame and air jets-A comparative study[J]. Applied Thermal Engineering, 2016, 92:42-49. doi: 10.1016/j.applthermaleng.2015.09.008
    [2] Chander S, Ray A. An experimental and numerical study of stagnation point heat transfer for methane/air laminar flame impinging on a flat surface[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14):3595-3607. doi: 10.1016/j.ijheatmasstransfer.2007.10.018
    [3] Remie M J, Cremers M F G, Schreel K R A M. Analysis of the heat transfer of an impinging laminar flame jet[J]. International Journal of Heat and Mass Transfer, 2007, 50(13-14):2816-2827. doi: 10.1016/j.ijheatmasstransfer.2006.10.053
    [4] Chander S, Ray A. Flame impingement heat transfer:A review[J]. Energy Conversion and Management, 2005, 46(18):2803-2837. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210526622/
    [5] 徐惊雷, 徐忠, 肖敏, 等.冲击射流的研究概述[J].力学与实践, 1999, 21(6):8-17. http://d.old.wanfangdata.com.cn/Periodical/hkgyjs200602015

    Xu J L, Xu Z, Xiao M, et al. On impinging jet research[J]. Mechanics in Engineering, 1999, 21(6):8-17. http://d.old.wanfangdata.com.cn/Periodical/hkgyjs200602015
    [6] Zuckerman N, Lior N. Jet impingement heat transfer:physics, correlations, and numerical modeling[J]. Advances in Heat Transfer, 2006, 39(06):565-631. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0212758683/
    [7] 过增元.场协同原理与强化传热新技术[M].北京:中国电力出版社, 2004.

    Guo Z Y. Field synergy principle and enhanced heat transfer technology[M]. Beijing:China Electric Power Press, 2004.
    [8] 张建辉, 尹航, 陈永辰.冲击射流预混火焰的数值模拟[J].能源研究与信息, 2011, 27(1):38-45. doi: 10.3969/j.issn.1008-8857.2011.01.007

    Zhang J H, Dai R, Chen Y C. Numerical simulation of the impinging-jet premixed flame[J]. Energy Research and Information, 2011, 27(1):38-45. doi: 10.3969/j.issn.1008-8857.2011.01.007
    [9] 陈庆光, 徐忠, 张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展, 2002, 32(1):92-108. doi: 10.3321/j.issn:1000-0992.2002.01.008

    Chen Q G, Xu Z, Zhang Y J. Advances in numerical studies of turbulent impinging jet flow and heat transfer[J]. Advances in Mechanics, 2002, 32(1):92-108. doi: 10.3321/j.issn:1000-0992.2002.01.008
    [10] 苑达, 王丙兴, 王昭东, 等.单喷嘴冲击射流的数值模拟[J].中国冶金, 2014, 24(增刊):222-226. http://d.old.wanfangdata.com.cn/Conference/8507565

    Yuan D, Wang B X, Wang Z D, et al. Numerical simulation of single nozzle jet for ultra-fast cooling[J]. China Metallurgy, 2014, 24(s):222-226. http://d.old.wanfangdata.com.cn/Conference/8507565
    [11] 徐惊雷, 徐忠, 张堃元, 等.雷诺数对半封闭紊流冲击射流流场影响的实验研究[J].南京航空航天大学学报, 2001, 33(2):187-190. doi: 10.3969/j.issn.1005-2615.2001.02.020

    Xu J L, Xu Z, Zhang K Y, et al. Experimental study of Reynolds number effect on turbulent impinging jet flow[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(2):187-190. doi: 10.3969/j.issn.1005-2615.2001.02.020
    [12] 熊霏, 姚朝晖, 郝鹏飞, 等.冲击射流的PIV实验研究[J].流体力学实验与测量, 2004, 18(3):68-72. doi: 10.3969/j.issn.1672-9897.2004.03.015

    Xiong F, Yao Z H, Hao P F, et al. PIV investigation of impinging jet[J]. Experiments and Measurements in Fluid Mechanics. 2004, 18(3):68-72. doi: 10.3969/j.issn.1672-9897.2004.03.015
    [13] 陈庆光, 徐忠, 吴玉林, 等.矩形管湍流冲击射流场的PIV实验研究[J].实验流体力学, 2005, 19(1):87-93. doi: 10.3969/j.issn.1672-9897.2005.01.018

    Chen Q G, Xu Z, Wu Y L, et al. Experimental study on rectangular turbulent impinging jet flow field by PIV technique[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):87-93. doi: 10.3969/j.issn.1672-9897.2005.01.018
    [14] 姚朝晖, 侯修洲, 郝鹏飞.超声速冲击射流的PIV实验研究[J].实验流体力学, 2007, 21(4):32-35. doi: 10.3969/j.issn.1672-9897.2007.04.007

    Yao Z H, Hou X Z, Hao P F. PIV experimental research on supersonic impinging jet[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4):32-35. doi: 10.3969/j.issn.1672-9897.2007.04.007
    [15] Milson A, Chigier N A. Studies of methane and methane-air flames impinging on a cold plate[J]. Combustion and Flame, 1973, 21(3):295-305. doi: 10.1016/S0010-2180(73)80052-5
    [16] Van der Meer T H. Stagnation point heat transfer from turbulent low reynolds number jets and flame jets[J]. Experimental Thermal and Fluid Science, 1991, 4(1):115-126. doi: 10.1016/0894-1777(91)90025-M
    [17] Chander S, Ray A. Experimental and numerical study on the occurrence of off-stagnation peak in heat flux for laminar methane/air flame impinging on a flat surface[J]. International Journal of Heat and Mass Transfer, 2011, 54(5-6):1179-1186. doi: 10.1016/j.ijheatmasstransfer.2010.10.035
    [18] Li H B, Zhen H S, Leung C W. Effects of plate temperature on heat transfer and emissions of impinging flames[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):4176-4184. doi: 10.1016/j.ijheatmasstransfer.2010.05.040
    [19] Li H B, Zhen H S, Leung C W. Nozzle effect on heat transfer and CO emission of impinging premixed flames[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3):625-635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4877613a160a185d70cda5dceb4cbda4
    [20] O'Donovan T S, Murray D B. Jet impingement heat transfer-Part Ⅰ:Mean and root-mean-square heat transfer and velocity distributions[J]. International Journal of Heat and Mass Transfer, 2007, 50(17-18):3291-3301. doi: 10.1016/j.ijheatmasstransfer.2007.01.044
    [21] O'Donovan T S, Murray D B. Jet impingement heat transfer-Part Ⅱ:A temporal investigation of heat transfer and local fluid velocities[J]. International Journal of Heat and Mass Transfer, 2007, 50(17-18):3302-3314. doi: 10.1016/j.ijheatmasstransfer.2007.01.047
    [22] Goldstein R J, Timmers J F. Visualization of heat transfer from arrays of impinging jets[J]. International Journal of Heat and Mass Transfer, 1982, 25(12):1857-1868. doi: 10.1016/0017-9310(82)90108-9
    [23] O'Donovan T S. Fluid flow and heat transfer of an impinging air jet[D]. Dublin, Ireland: University of Dublin, 2005.
    [24] Chen Y C, Peters N, Schneemann G A, et al. The detailed flame structure of highly stretched turbulent premixed methane-air flames[J]. Combustion and Flame, 1996, 107(3):223-244. doi: 10.1016/S0010-2180(96)00070-3
    [25] Zhou B, Brackmann C, Li Q, Wang Z, et al. Distributed reactions in highly turbulent premixed methane/air flames. Part Ⅰ. Flame structure characterization[J]. Combustion and Flame, 2014, 162(7):2937-2953. http://cn.bing.com/academic/profile?id=39e810f42f703acd8e3b650a6c7e69d9&encoded=0&v=paper_preview&mkt=zh-cn
    [26] 陆嘉, 廖光煊, 陶常法.甲烷射流扩散火焰结构试验研究[J].安全与环境学报, 2010, 10(6):164-168. doi: 10.3969/j.issn.1009-6094.2010.06.038

    Lu J, Liao G X, Tao C F, Experimental study of flame shape of methane jet diffusion flame[J]. Journal of Safety and Environment, 2010, 10(6):164-168. doi: 10.3969/j.issn.1009-6094.2010.06.038
    [27] Dong L L, Cheung C S, Leung C W. Heat transfer characteristics of an impinging inverse diffusion flame jet-Part Ⅰ:Free flame structure[J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26):5108-5123. doi: 10.1016/j.ijheatmasstransfer.2007.07.018
    [28] Dong L L, Cheung C S, Leung C W. Heat transfer characteristics of an impinging inverse diffusion flame jet-Part Ⅱ:Impinging flame structure and impingement heat transfer[J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26):5124-5138. doi: 10.1016/j.ijheatmasstransfer.2007.07.017
    [29] Buresti G, Talamelli A, Petagna P. Experimental characterization of the velocity field of a coaxial jet configuration[J]. Expe-rimental Thermal and Fluid Science, 1994, 9(2):135-146. doi: 10.1016/0894-1777(94)90106-6
    [30] 令狐昌鸿, 王高峰, 钟亮, 等.旋流流化床固体粒子发生器: 中国, 201610646669.7[P]. 2016-11-23.

    Linhu C H, Wang G F, Zhong L, et al. Swirling fluidized bed solid particle generator: China, 201610646669.7[P]. 2016-11-23.
    [31] 沈熊.激光测速技术(LDV)诞生50周年启示[J].实验流体力学, 2014, 28(6):51-55. http://www.syltlx.com/CN/abstract/abstract10789.shtml

    Shen X. A historical review for the 50th anniversary of laser doppler velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):51-55. http://www.syltlx.com/CN/abstract/abstract10789.shtml
    [32] 费业泰.误差理论与数据处理[M].第7版.北京:机械工业出版社, 2015.

    Fei Y T. Error theory and data processing[M]. 7th ed. Beijing:China Machine Press, 2015.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  114
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2018-04-27
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日