留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡推进型中空Janus微球运动特性的实验研究

张静 郑旭 王雷磊 崔海航 李战华

张静, 郑旭, 王雷磊, 等. 气泡推进型中空Janus微球运动特性的实验研究[J]. 实验流体力学, 2017, 31(2): 61-66. doi: 10.11729/syltlx20160152
引用本文: 张静, 郑旭, 王雷磊, 等. 气泡推进型中空Janus微球运动特性的实验研究[J]. 实验流体力学, 2017, 31(2): 61-66. doi: 10.11729/syltlx20160152
Zhang Jing, Zheng Xu, Wang Leilei, et al. Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 61-66. doi: 10.11729/syltlx20160152
Citation: Zhang Jing, Zheng Xu, Wang Leilei, et al. Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 61-66. doi: 10.11729/syltlx20160152

气泡推进型中空Janus微球运动特性的实验研究

doi: 10.11729/syltlx20160152
基金项目: 

国家自然科学基金 11572335

国家自然科学基金 11272322

国家自然科学基金 11672358

陕西省教育厅重点实验室项目 15JS045

详细信息
    作者简介:

    张静 (1991-), 女, 山西忻州人, 硕士研究生。研究方向:Janus颗粒的自驱动机理研究及应用。通信地址:陕西省西安市碑林区雁塔路13号西安建筑科技大学环境与市政工程学院 (710055)。E-mail:932073188@qq.com

    通讯作者:

    郑旭, E-mail: zhengxu@lnm.imech.ac.cn

  • 中图分类号: O353.4;O353.5

Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres

  • 摘要: 本文通过Pt-SiO2型(铂-二氧化硅型)中空Janus微球在低浓度2%~4% H2O2溶液中的气泡驱动实验,观察到在每个气泡生长-溃灭周期内,Janus微球的运动呈现3个特征阶段,分别为自扩散泳、气泡生长和气泡溃灭。其中气泡溃灭阶段微球在射流驱动下的推进速度可达每秒几十毫米,比前2个阶段的平均速度大2~3个数量级。实验观察到气泡生长阶段其半径与时间存在Rb~t1/3Rb~t1/2两种标度率。由于气泡在Janus微球催化剂表面(Pt侧)的生长点偏离对称轴位置,Janus微球的运动轨迹呈圆周形。随H2O2溶液浓度的增加,还可以进一步提高Janus微球的运动速度。此研究不仅定量分析了Janus微球的运动特性,而且为实际应用中提高Janus双面微马达的运动速度和能量利用率提供了参考依据。
  • 图  1  (a) 电子束蒸发制备Janus微球的示意图; (b) 显微图像

    Figure  1.  (a) Schematic to show the fabrication of Pt-SiO2 type Janus microspheres (JMs). (b) Optical image of a Pt-SiO2 type JM

    图  2  单个周期内气泡生长与溃灭的实验图像 (dp=20.0μm,CH2O2= 3%)

    Figure  2.  Experimental image of bubble's growth and collapse in a single period (dp= 20.0μm and CH2O2 = 3%)

    图  3  Janus微球位移L与时间t的关系

    Figure  3.  Relationship of JM displacement L and time t

    图  4  4个Janus微球的无量纲位移L/dp与时间t的关系

    Figure  4.  Relationship of normalized displacement L/dp for four JMs and time t

    图  5  Janus微球位移L与气泡半径Rb随时间t的变化

    Figure  5.  JM displacement L and the bubble radius Rb vs. time t

    图  6  气泡推进型Janus微球在1.5s内的运动轨迹,“t0”运动轨迹起始点,“t1.5”终点,转角α定义见图 8(dp=20.0μm, CH2O2=3%)

    Figure  6.  Typical motion trajectory of a bubble-driven JM in 1.5s, where "t0" and "t1.5" are starting and ending points respectively, α is given in Fig.8 (dp=20.0μm and CH2O2= 3%)

    图  7  4个不同Janus微球在1.5s内的运动轨迹

    Figure  7.  Typical motion trajectories of four JMs in 1.5s

    图  8  气泡在Janus微球表面生长点的实验照片与示意图

    Figure  8.  Experimental image and schematic of bubble growth position on JM surface

    图  9  Janus微球平均速度与H2O2溶液浓度的关系

    Figure  9.  Average speed Vp of JM vs. the concentrations of H2O2 solution CH2O2

  • [1] Gennes P G D. Soft matter (nobel lecture)[J]. Angewandte Chemie International Edition, 1992, 31(7):842-845. doi: 10.1002/(ISSN)1521-3773
    [2] Chernyak V G, Starikov S A, Beresnev S A. Diffusiophoresis of an aerosol particle in a binary gas mixture[J]. Journal of Applied Mechanics & Technical Physics, 2001, 42(3):445-454.
    [3] Howse J R, Jones R A, Ryan A J, et al. Self-motile colloidal particles:from directed propulsion to random walk[J]. Physical Review Letters, 2007, 99(4):048102. doi: 10.1103/PhysRevLett.99.048102
    [4] 武美玲, 郑旭, 崔海航, 等. Janus颗粒有效扩散系数的实验研究[J].水动力学研究与进展, 2014, 29(3):274-281. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201403003.htm

    Wu M L, Zheng X, Cui H H, et al. Experiment research on the effective diffusion coefficient of Janus particles[J]. Journal of Hydrodynamics, 2014, 29(3):274-281. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201403003.htm
    [5] Liu Z, Li J, Wang J, et al. Small-scale heat detection using catalytic microengines irradiated by laser[J]. Nanoscale, 2013, 5(4):1345-1352. doi: 10.1039/c2nr32494f
    [6] Brenner H, Bielenberg J R. A continuum approach to phoretic motions:thermophoresis[J]. Physica a Statistical Mechanics & its Applications, 2005, 355(355):251-273. https://www.researchgate.net/publication/257216999_A_continuum_approach_to_phoretic_motions_Thermophoresis
    [7] Wu Z, Lin X, Wu Y, et al. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets[J]. Acs Nano, 2014, 8(6):6097-6105. doi: 10.1021/nn501407r
    [8] Wu M, Zhang H, Zheng X, et al. Simulation of diffusiophoresis force and the confinement effect of Janus particles with the continuum method[J]. Aip Advances, 2014, 4(3):32-33. https://www.researchgate.net/profile/Xu_Zheng4/publication/262987436_Simulation_of_diffusiophoresis_force_and_the_confinement_effect_of_Janus_particles_with_the_continuum_method/links/0c9605385a7b2f0186000000.pdf?origin=publication_detail
    [9] Wang S, Wu N. Selecting the swimming mechanisms of colloidal particles:bubble propulsion versus self-diffusiophoresis[J]. Langmuir, 2014, 30(12):3477-3486. doi: 10.1021/la500182f
    [10] Magdanz V, Guix M, Schmidt O G. Tubular micromotors:from microjets to spermbots[J]. Robotics & Biomimetics, 2014, 1(1):1-10. http://paperity.org/p/73013111/tubular-micromotors-from-microjets-to-spermbots
    [11] Manjare M, Yang B, Zhao Y P. Bubble driven quasioscillatory translational motion of catalytic micromotors[J]. Physical Review Letters, 2012, 109(12):128305. doi: 10.1103/PhysRevLett.109.128305
    [12] Jurado-Sánchez B, Sattayasamitsathit S, Gao W, et al. Self-propelled activated carbon janus micromotors for efficient water purification[J]. Small, 2015, 11(4):499-506. doi: 10.1002/smll.v11.4
    [13] Soler L, Magdanz V, Fomin V M, et al. Self-propelled micromotors for cleaning polluted water[J]. Acs Nano, 2013, 7(11):9611-9620. doi: 10.1021/nn405075d
    [14] Zheng X, Ten H B, Kaiser A, et al. Non-Gaussian statistics for the motion of self-propelled Janus particles:experiment versus theory[J]. Physical Review E, 2013, 88(3-1):3772-3774. https://www.researchgate.net/publication/257812907_Non-Gaussian_statistics_for_the_motion_of_self-propelled_Janus_particles_Experiment_versus_theory
    [15] Marqusee J A, Ross J. Theory of ostwald ripening:competitive growth and its dependence on volume fraction[J]. Journal of Chemical Physics, 1983, 80(1):536-543.
  • 加载中
图(9)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  152
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日