留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴接触变形对融合过程影响的实验研究

魏存驹 李应杰 王鲁海 杨基明

魏存驹, 李应杰, 王鲁海, 等. 液滴接触变形对融合过程影响的实验研究[J]. 实验流体力学, 2017, 31(3): 88-93. doi: 10.11729/syltlx20160146
引用本文: 魏存驹, 李应杰, 王鲁海, 等. 液滴接触变形对融合过程影响的实验研究[J]. 实验流体力学, 2017, 31(3): 88-93. doi: 10.11729/syltlx20160146
Wei Cunju, Li Yingjie, Wang Luhai, et al. Experimental study of the effects of contact deformation on drop coalescence scenario[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 88-93. doi: 10.11729/syltlx20160146
Citation: Wei Cunju, Li Yingjie, Wang Luhai, et al. Experimental study of the effects of contact deformation on drop coalescence scenario[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 88-93. doi: 10.11729/syltlx20160146

液滴接触变形对融合过程影响的实验研究

doi: 10.11729/syltlx20160146
详细信息
    作者简介:

    魏存驹(1994-), 男, 甘肃兰州人, 本科生。研究方向:实验多相流体力学。通信地址:安徽省合肥市蜀山区黄山路443号中国科学技术大学西校区(230027)。E-mail:wcj1320@mail.ustc.edu.cn

    通讯作者:

    杨基明, E-mail:jmyang@nstc.edu.cn

  • 中图分类号: O359.1

Experimental study of the effects of contact deformation on drop coalescence scenario

  • 摘要: 采用一种产生大尺寸液滴和顶视视角观测的新方法,借助高速阴影系统,捕捉到液滴融合过程中液桥截面形态的变化。从光学观测的角度验证了以前电测法所得到的初期融合过程描述。利用顶视方法所特有的辨别液桥几何形状、中心位置等优势,观测了不同液滴靠近速度(va)下2种融合模式。根据液桥中心演变特征分别判定为中心融合和边缘融合模式,并发现两者之间存在一临界液滴靠近速度(vcross),当va < vcross时,融合过程始于接触中心,而当va >vcross时,融合自液滴挤压形成的液膜边缘开始,与融合前液滴接触变形密切相关。
  • 图  1  实验装置原理图

    Figure  1.  Schematic of experimental setup

    图  2  较低靠近速度下圆形融合过程

    Figure  2.  The coalescing process at lower approaching speed

    图  3  较高靠近速度下形变融合过程

    Figure  3.  The coalescing process at higher approaching speed

    图  4  液桥半径随时间变化关系

    Figure  4.  Liquid bridge radius versus time

    图  5  液桥中心偏移与融合前接触变形示意图

    Figure  5.  The displacement of bridge center and drop deformation before coalescence

    图  6  不同靠近速度下液桥中心偏移曲线

    Figure  6.  The displacement of liquid bridge center versus time with different approaching speeds

    图  7  不同靠近速度下液桥最大中心偏移与理论液膜半径关系

    Figure  7.  The displacement of bridge center and theoretical bridge radius versus approaching speed

    图  8  实际液膜半径rf与液桥最大中心偏移lr关系

    Figure  8.  The radius of liquid film rf versus the displacement of bridge center lr

    表  1  液滴与环境液体的相关物性参数

    Table  1.   The properties of the drop and ambient fluid

  • [1] 陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45: 55-110. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500003.htm

    Chen X D, Hu G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45: 55-110. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500003.htm
    [2] 申峰, 李易, 刘赵淼, 等.基于微流控技术的微液滴融合研究进展[J].分析化学, 2015, 43(12): 1942-1954. doi: 10.11895/j.issn.0253-3820.100509

    Shen F, Li Y, Liu Z M, et al. Advances in micro-droplets coalescence using microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1942-1954. doi: 10.11895/j.issn.0253-3820.100509
    [3] Sprittles J E, Shikhmurzaev Y D. Coalescence of liquid drops: different models versus experiment[J]. Physics of Fluids, 2012, 24(12): 122105. doi: 10.1063/1.4773067
    [4] Sprittles J E, Shikhmurzaev Y D. Dynamics of liquid drops coalescing in the inertial regime[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(6): 063008. doi: 10.1103/PhysRevE.89.063008
    [5] Sprittles J E, Shikhmurzaev Y D. The coalescence of liquid drops in a viscous fluid: interface formation model[J]. Journal of Fluid Mechanics, 2014, 751: 480-499. doi: 10.1017/jfm.2014.313
    [6] Sprittles J E, Shikhmurzaev Y D. A parametric study of the coalescence of liquid drops in a viscous gas[J]. Journal of Fluid Mechanics, 2014, 753: 279-306. doi: 10.1017/jfm.2014.362
    [7] Thoroddsen S, Etoh T, Takehara K. High-speed imaging of drops and bubbles[J]. Annu Rev Fluid Mech, 2008, 40: 257-85. doi: 10.1146/annurev.fluid.40.111406.102215
    [8] Kavehpour H P. Coalescence of drops[J]. Annual Review of Fluid Mechanics, 2015, 47(1): 245-268. doi: 10.1146/annurev-fluid-010814-014720
    [9] Baroudi L, Nagel S R, Morris J F, et al. Dynamics of viscous coalescing droplets in a saturated vapor phase[J]. Physics of Fluids, 2015, 27(12): 121702. doi: 10.1063/1.4936942
    [10] Pothier J C, Lewis L J. Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence[J]. Physical Review B, 2012, 85(11): 115447. doi: 10.1103/PhysRevB.85.115447
    [11] 刘栋. 液滴碰撞及其融合过程的数值模拟研究[D]. 北京: 清华大学, 2013.

    Liu D. Numerical simulations on collision and coalescence of binary droplets[D]. Beijing: Tsinghua University, 2013.
    [12] Tang C, Zhang P, Law C K. Bouncing, coalescence, and separation in head-on collision of unequal-size droplets[J]. Physics of Fluids, 2012, 24(2): 022101. doi: 10.1063/1.3679165
    [13] Paulsen J D, Burton J C, Nagel S R. Viscous to inertial crossover in liquid drop coalescence[J]. Phys Rev Lett, 2011, 106(11): 114501. doi: 10.1103/PhysRevLett.106.114501
    [14] Paulsen J D, Burton J C, Nagel S R, et al. The inexorable resistance of inertia determines the initial regime of drop coalescence[J]. Proc Natl Acad Sci U S A, 2012, 109(18): 6857-6861. doi: 10.1073/pnas.1120775109
    [15] Paulsen J D. Approach and coalescence of liquid drops in air[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 88(6): 063010. doi: 10.1103/PhysRevE.88.063010
    [16] Paulsen J D, Carmigniani R, Kannan A, et al. Coalescence of bubbles and drops in an outer fluid[J]. Nat Commun, 2014, 5: 3182. http://www.oalib.com/paper/3582125
    [17] Wang L, Zhang G, Wu H, et al. Note: a top-view optical approach for observing the coalescence of liquid drops[J]. Rev Sci Instrum, 2016, 87(2): 026103. doi: 10.1063/1.4941778
    [18] 王鲁海. 复杂管流条件下涡轮流量计响应规律及多相影响研究[D]. 合肥: 中国科学技术大学, 2016.

    Wang L H. The response characteristics of flowmeter in complex and multiphase flow conditions[D]. Hefei: University of Science and Technology of China, 2016.
    [19] Fezzaa K, Wang Y. Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets[J]. Phys Rev Lett, 2008, 100(10): 104501. doi: 10.1103/PhysRevLett.100.104501
    [20] Zhang P, Law C K. An analysis of head-on droplet collision with large deformation in gaseous medium[J]. Physics of Fluids, 2011, 23(4): 042102. doi: 10.1063/1.3580754
    [21] Case S C. Coalescence of low-viscosity fluids in air[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 79(2): 026307. doi: 10.1103/PhysRevE.79.026307
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  117
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-23
  • 修回日期:  2016-12-27
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日