留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.4m跨声速风洞推力矢量试验测力系统研制与应用

苗磊 谢斌 李建强 李耀华 黄存栋 贾巍 马涛

苗磊, 谢斌, 李建强, 等. 2.4m跨声速风洞推力矢量试验测力系统研制与应用[J]. 实验流体力学, 2017, 31(6): 78-85. doi: 10.11729/syltlx20160105
引用本文: 苗磊, 谢斌, 李建强, 等. 2.4m跨声速风洞推力矢量试验测力系统研制与应用[J]. 实验流体力学, 2017, 31(6): 78-85. doi: 10.11729/syltlx20160105
Miao Lei, Xie Bin, Li Jianqiang, et al. Development and application of the measurement system for thrust vectoring tests at 2.4m×2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 78-85. doi: 10.11729/syltlx20160105
Citation: Miao Lei, Xie Bin, Li Jianqiang, et al. Development and application of the measurement system for thrust vectoring tests at 2.4m×2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 78-85. doi: 10.11729/syltlx20160105

2.4m跨声速风洞推力矢量试验测力系统研制与应用

doi: 10.11729/syltlx20160105
详细信息
    作者简介:

    苗磊(1982-), 男, 四川三台人, 工程师。研究方向:风洞应变天平研制与应用。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:miaogangsir@sina.com

    通讯作者:

    苗磊, E-mail: miaogangsir@sina.com

  • 中图分类号: TH715.1+12;V211.74

Development and application of the measurement system for thrust vectoring tests at 2.4m×2.4m transonic wind tunnel

  • 摘要: 推力矢量控制(TVC)技术能实现飞行器过失速机动飞行,使飞行器突破失速障、增强机敏性,在改善起降性能、巡航性能等方面具有重要作用。在2.4m跨声速风洞推力矢量试验中,采用3台六分量应变天平和2个独立的空气桥系统来实现飞机模型气动力和2个尾喷管转向喷流推进特性同时分别测量。推力矢量试验模型扁平外形使测力系统的布局及结构设计受到较大限制,狭小的模型内部需布置3台六分量天平、2套独立的空气桥系统及管路、支撑系统、压力测量系统等,采用传统方式无法完成如此复杂的系统设计,更无法完成高压条件下空气桥系统与测力天平的匹配设计。在测力系统的研制中,采用了一体化设计理念和刚度匹配设计方法,结合ANSYS有限元软件较好地解决了系统各部件的布局及结构优化等问题。天平校准结果和风洞试验结果证明测力系统满足推力矢量试验需求。
  • 图  1  推力矢量试验系统构成

    Figure  1.  The component of thrust vectoring test system

    图  2  测力系统构成

    Figure  2.  The component of measurement system

    图  3  测力系统布局1

    Figure  3.  Balance measurement system layout 1

    图  4  测力系统布局2

    Figure  4.  Balance measurement system layout 2

    图  5  双“Z”型空气管路

    Figure  5.  The double "Z" shaped structure of air tube

    图  6  设计分析方法流程图

    Figure  6.  The procedure of design and analysis method

    图  7  全机天平

    Figure  7.  The primary balance

    图  8  推力天平

    Figure  8.  The thrust balance

    图  9  测力系统

    Figure  9.  The measurement system

    图  10  系数差异

    Figure  10.  The difference of coefficients

    图  11  空气管路

    Figure  11.  Air tube

    图  12  补偿前温度曲线

    Figure  12.  Temperature curve without compensation

    图  13  补偿后温度曲线

    Figure  13.  Temperature curve with compensation

    图  14  保护涂层

    Figure  14.  Protection paint coat

    图  15  湿度控制

    Figure  15.  Dampness control

    图  16  六自由度自动校准台

    Figure  16.  Six-degree of freedom automatic calibration machine

    图  17  加压校准

    Figure  17.  Pressurization calibration

    图  18  喷流校准

    Figure  18.  Jet flow calibration

    图  19  推力天平1轴向力试验精度

    Figure  19.  The axial force test accuracy of thrust balance 1

    图  20  推力天平2轴向力试验精度

    Figure  20.  The axial force test accuracy of thrust balance 2

    图  21  主天平轴向力试验精度

    Figure  21.  The axial force test accuracy of the primary balance

    表  1  天平设计载荷

    Table  1.   Design load of balance

    名称 Y
    /N
    Mz
    /(N·m)
    X
    /N
    Mx
    /(N·m)
    Z
    /N
    My
    /(N·m)
    全机天平 15000 1000 1200 480 2200 500
    推力天平 1200 200 800 50 1200 200
    下载: 导出CSV

    表  2  全机天平计算应变

    Table  2.   The calculated strain of primary balance

    名称 Y Mz X Mx Z My
    贴片处应变(×10-6) 445 480 390 270 170 340
    下载: 导出CSV

    表  3  推力天平的计算应变

    Table  3.   The calculated strain of thrust balance

    应变(×10-6) Y Mz X Mx Z My
    推力天平 205 560 270 175 207 558
    推力天平带空气桥系统 0MPa 204 440 268 141 204 478
    1MPa 198 400 267 140 203 442
    2MPa 191 370 266 137 201 402
    下载: 导出CSV

    表  4  全机天平校准结果

    Table  4.   Calibration result of the primary balance

    Y Mz X Mx Z My
    校准不确定度/% 0.08 0.09 0.11 0.15 0.10 0.12
    下载: 导出CSV

    表  5  推力天平1校准结果

    Table  5.   Calibration result of the thrust balance 1

    校准不确定度/% Y Mz X Mx Z My
    推力天平 0.03 0.02 0.06 0.20 0.05 0.05
    推力天平带空气桥系统 0MPa 0.30 0.20 0.10 0.90 0.14 0.19
    1MPa 0.35 0.30 0.11 1.00 0.20 0.24
    2MPa 0.50 0.45 0.11 1.50 0.30 0.30
    60g/s 0.32 0.16 0.12 0.91 0.20 0.21
    100g/s 0.50 0.22 0.20 1.00 0.23 0.30
    200g/s 0.60 0.33 0.27 0.89 0.30 0.34
    下载: 导出CSV
  • [1] 曲东才.推力矢量控制技术发展及关键技术分析[J].航空科学技术, 2002, (3):30-33. http://www.cqvip.com/QK/97819X/200203/6318569.html

    Qu D C. Development for thrust vector control technology and analysis for critical technology[J]. Acronantical Science and Technology, 2002, (3):30-33. http://www.cqvip.com/QK/97819X/200203/6318569.html
    [2] 贾毅, 郑芳, 黄浩, 等.低速风洞推力矢量试验技术研究[J].实验流体力学, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml

    Jia Y, Zheng F, Huang H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml
    [3] Smith C L, Riddle T R. Jet effects testing considerations for the next-generation long-range strike aircraft[R]. AIAA-2008-1621, 2008. doi: 10.2514/6.2008-1621
    [4] Crose J, Mack T, Marx D. NASA/MFSC nozzle test bed[R]. AIAA-89-2871, 1989. doi: 10.2514/6.1989-2871
    [5] 付尧明, 王强, 额日其太, 等.矢量喷管六分量测力试验台的研制[J].流体力学实验与测量, 2002, 16(1):87-93. http://d.wanfangdata.com.cn/Periodical/ltlxsyycl200201014

    Fu Y M, Wang Q, Eriqitai, et al. Development of the six-component force-measuring balance for thrust-vectoring nozzle testing[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(1):87-93. http://d.wanfangdata.com.cn/Periodical/ltlxsyycl200201014
    [6] 贺伟, 童泽润, 李宏斌.单模块超燃发动机推力测量天平研制[J].航空动力学报, 2010, 25(10):2285-2289. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201402033.htm

    He W, Tong Z R, Li H B. Investigation of thrust balance for the single module scramjet[J]. Journal of Aerospace Power, 2010, 25(10):2285-2289. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201402033.htm
    [7] 章荣平, 王勋年, 黄勇, 等.低速风洞全模TPS试验空气桥的设计与优化[J].实验流体力学, 2012, 26(6):48-52. http://www.syltlx.com/CN/abstract/abstract10476.shtml

    Zhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):48-52. http://www.syltlx.com/CN/abstract/abstract10476.shtml
    [8] 王超, 林俊.天平与波纹管系统结构设计与有限元分析[J].实验流体力学, 2013, 27(3):77-92. http://www.syltlx.com/CN/abstract/abstract10437.shtml

    Wang C, Lin J. Structure design and finite element analysis on system of balance and bellows[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):77-92. http://www.syltlx.com/CN/abstract/abstract10437.shtml
    [9] 刘岩, 段玫, 张道伟.波纹管应力分析研究进展[J].管道技术与设备, 2006, (4):31-33. http://www.cqvip.com/QK/97879X/200604/22690496.html

    Liu Y, Duan M, Zhang D W. Development of stress analysis of bellows[J]. Pipeline Technique and Equipment, 2006, (4):31-33. http://www.cqvip.com/QK/97879X/200604/22690496.html
    [10] 哈力旦·木沙, 买买提依明·艾尼.机械密封焊接金属波纹管膜片结构的有限元分析[J].新疆大学学报(自然科学版), 2007, 24(4):490-494. http://www.doc88.com/p-340625080328.html

    Halidan Musha, Mamaitiming Aini. FEM analysis of metal welded bellow wave of mechanical seal[J]. Journal of Xinjiang University (Natural Science Edition), 2007, 24(4):490-494. http://www.doc88.com/p-340625080328.html
    [11] 刘高计, 谌满荣, 于卫青.风洞应变天平优化设计方法研究[J].弹箭与制导学报, 2006, 26(2):94-97. http://d.wanfangdata.com.cn/Periodical/djyzdxb200602033

    Liu G J, Chen M R, Yu W Q. The research of optimum design method of strain-gauge balance in wind-tunnel[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(2):94-97. http://d.wanfangdata.com.cn/Periodical/djyzdxb200602033
    [12] Braman K B, Schweikhard W G, Yechout T R. Thrust modeling:A simplified in-flight thrust and airflow prediction technique for flight test performance measurements[R]. AIAA-83-2751, 1983. https://www.researchgate.net/publication/268462374_Thrust_modeling_-_A_simplified_in-flight_thrust_and_airflow_prediction_technique_for_flight_test_performance_measurements
    [13] Wong K C. Derivation of the data reduction equations for the calibration of the six-component thrust stand in the CE-22 advanced nozzle test facility[R]. NASA/TM 2003-212326. https://www.researchgate.net/publication/24293133_Derivation_of_the_Data_Reduction_Equations_for_the_Calibration_of_the_Six-Component_Thrust_Stand_in_the_CE-22_Advanced_Nozzle_Test_Facility
    [14] Booth D, Ulbrich N. Calibration and data analysis of the MC-130 air balance[C]. 8th International Symposium on Strain-Gauge Balances, Ameron Hotel Flora, Lucerne, Switzerland, 2012. doi: 10.2514/6.2013-545
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  80
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-07-11
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日