留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国外低温内式应变天平技术研究进展

赵莉 邹满玲 田静琳 羊玺

赵莉, 邹满玲, 田静琳, 等. 国外低温内式应变天平技术研究进展[J]. 实验流体力学, 2016, 30(6): 1-9. doi: 10.11729/syltlx20160090
引用本文: 赵莉, 邹满玲, 田静琳, 等. 国外低温内式应变天平技术研究进展[J]. 实验流体力学, 2016, 30(6): 1-9. doi: 10.11729/syltlx20160090
Zhao Li, Zou Manling, Tian Jinglin, et al. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 1-9. doi: 10.11729/syltlx20160090
Citation: Zhao Li, Zou Manling, Tian Jinglin, et al. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 1-9. doi: 10.11729/syltlx20160090

国外低温内式应变天平技术研究进展

doi: 10.11729/syltlx20160090
详细信息
    通讯作者:

    赵莉(1972-), 女, 湖南南县人, 高级工程师。研究方向:情报研究与信息化建设。通信地址:四川省绵阳市二环路南段6号207信箱(621000)。E-mail:1262162204@qq.com

  • 中图分类号: V211.752;TH715.1+12

Advances of research on internal cryogenic strain gauge balance abroad

  • 摘要: 作为低温风洞测力试验的核心测试设备,低温天平受低温风洞气流温度低、温度变化大的影响,会产生零点温度漂移、灵敏度变化等一系列问题,对试验数据的精准度产生影响。因此,相较常温天平而言,低温天平的研制要求更多,难度也更大。在广泛调研国外低温天平研究进展与关键技术的基础上,系统介绍了低温天平的设计与优化、天平材料的选取及热处理、天平的加工与制造、天平应变片的匹配及粘贴、天平校准方法及校准设备等天平研制的多个关键环节,并对未来低温天平技术的发展进行了展望,为我国低温天平的研制及工程化应用提供参考。
  • 图  1  NLR 771天平[18]

    Figure  1.  NLR balance 771[18]

    图  2  温度梯度作用下RAE被测天平的信号变化[18]

    Figure  2.  Signals of RAE-test balance due to temperature gradients[18]

    图  3  温度梯度效应解决方案[19]

    Figure  3.  Solution for temperature gradient effect[19]

    图  4  天平预制部件[25]

    Figure  4.  Prefabricated parts of balance[25]

    图  5  焊接后的天平体[25]

    Figure  5.  The body of balance after welding[25]

    图  6  最终完成的天平[25]

    Figure  6.  The balance after external machining[25]

    图  7  兰利使用的低温天平应变片匹配盘片[13]

    Figure  7.  Gage matching disc for LARC cryo-balances[13]

    图  8  兰利防潮处理实验箱[21]

    Figure  8.  Laboratory chamber used for application of moisture resistant coating[21]

    图  9  天平校准的二阶/三阶拟合[25]

    Figure  9.  Second-and third-order descriptions of balance calibration[25]

    图  10  NTF的变温校准台[21]

    Figure  10.  Variable temperature calibration stand of NTF[21]

    图  11  天平自动校准装置[37]

    Figure  11.  Automatic calibration machine[37]

    图  12  NASA的单矢量天平校准系统[40]

    Figure  12.  Single-vector balance calibration system of NASA[40]

    表  1  常见的低温用粘结剂[29]

    Table  1.   Common adhesives for low temperature[29]

    项目/
    型号
    固化成份粘结
    条件
    使用温度
    范围/℃
    制造
    单位
    UC-27常温聚氨酯室温,
    加压24h
    -269~室温日本共和
    公司
    PC-6酚醛150℃,
    加压24h
    -269~250日本共和
    公司
    EPY-500环氧93℃,
    加压26h
    -269~260美国BLH
    公司
    PLD-700加热聚酰
    亚胺
    260℃,
    加压2h
    -269~399美国BLH
    公司
    M-Bond
    610
    环氧-
    酚醛
    177℃,
    加压1h
    -269~260美国MM
    公司
    M-Bond
    AE-15
    环氧65℃,
    加压2h
    -269~96美国MM
    公司
    下载: 导出CSV
  • [1] 王发祥, 高速风洞试验[M].北京:国防工业出版社, 2003.
    [2] 恽起麟, 实验空气动力学[M].北京:国防工业出版社, 1991.
    [3] Kilgore R A. Evolution and development of cryogenic wind tunnels[R]. AIAA-2005-457, 2005.
    [4] Goodyer M J, Kilgore R A. The high Reynolds number cryogenic wind tunnel[R]. AIAA-72-995, 1972.
    [5] Wahls R A. The national transonic facility:a research retrospective (invited)[R]. AIAA-2001-0754, 2001.
    [6] Clark R W. High Reynolds number testing of advanced transport aircraft wings in the national transonic facility (Invited)[R]. AIAA-2001-0910, 2001.
    [7] Juergen Q. First measurements on an airbus high lift configuration at ETW up to flight Reynolds number[R]. AIAA-2002-0423, 2002.
    [8] Greena J, Quest J. A short history of the European transonic wind tunnel ETW[J]. Progress in Aerospace Sciences, 2011, 47(5):3219-368. https://www.researchgate.net/publication/232395594_A_short_history_of_the_European_Transonic_Wind_Tunnel_ETW
    [9] Ferris Judy. Cryogenic wind tunnel force instrumentation[C]//First International Symposium on Cryogenic Wind Tunnels, Southampton, 1979.
    [10] Schoenmakers T J. Development of a non-insulated cryogenic strain-gauge balance[R]. NLR, M-TP-82-006-U, 1982.
    [11] Ferris A T. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances[R]. NASA-TM-81845, 1980.
    [12] Kilgore R A, Davenport E E. Static force tests of a sharp leading edge delta-wing model at ambient and cryogenic temperatures with a description of the apparatus employed[R]. NASA-TM-X-73901, 1976.
    [13] Morre T C. Recommended strain gage application procedures for various Langley research center balances and test articles[R]. NASA TM-110327, 1997.
    [14] Morre T C. Suggested procedures for installing strain gauges on Langley research center wind tunnel balances, custom force measuring transducers, metallic and composite structural test articles[R]. NASA/TM-2004-213017, 2004.
    [15] Boyden R P, Johnson W G. Aerodynamic force measurements with a strain-gage balance in a cryogenic wind tunnel[R]. NASA TP-2251, 1983.
    [16] Law R D. Strain-gauge balance performance and internal temperature gradients measured in a cryogenic environment[R]. AD-A248840, 1992.
    [17] Baljeu J F. Development of a multi-component internal strain-gauge balance for model tests in a cryogenic wind tunnel[R]. NLR-TR-88157-U, 1990.
    [18] Hufnagel K, Ewald B. Force testing with internal strain gage balances[R]. AGARD-R-812, 1996.
    [19] Hufnagel K. Present status on internal wind tunnel balance technology[C]//Applied Aerodynamics and Design of Aerospace Vehicle (Sarod 2011) Symposium, Bangalore, India, 2001.
    [20] Hufnagel K, Quade M. The 2nd generation balance calibration machine of darmstadt university of technology (TUD)[R]. AIAA-2007-148, 2007.
    [21] Parker P A. Cryogenic balance technology at the national transonic facility[R]. AIAA-2001-0758, 2001.
    [22] Zhai J N, Ewald B, Hufnagel K. An investigation on the interference of internal six-component wind tunnel balances with FEM[C]//Instrumentation in Aerospace Simulation Facilities, 1995. ICIASF'95 Record, 1995.
    [23] Ewald B. The development of electron beam welded, strain-gaged wind-tunnel balances[J]. Journal of Aircraft, 1979, 16:349-352. doi: 10.2514/3.58530
    [24] Rhew R D. NASA LaRC strain gage balance design concepts[R]. NASA/CP-1999-209101/PT1, 1999.
    [25] Ewald B. Multi-component force balances for conventional and cryogenic wind tunnels[J]. Meas Sci Technol, 2000, 11:81-94. https://www.researchgate.net/publication/231141681_Multi-component_force_balances_for_conventional_and_cryogenic_wind_tunnels
    [26] Rush H F. Grain refining heat treatment to improve cryogenic toughness of high-strength steels[R]. NASA-TM-85816, 1984.
    [27] Ferris A T. Cryogenic strain gage techniques used in force balance design for the national transonic facility[R]. NASA-TM-87712, 1986.
    [28] Moore T C. Strain gages in use at NASA Langley-a technical review[C]//First International Symposium on Strain Gauge Balances, Hampton, Virginia, 1996.
    [29] 尹福炎.电阻应变计技术六十年(4).电结构应变测量用各种电阻应变计[J].传感器世界, 1999, 1:15-25. http://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ199901002.htm

    Yin F Y. sixty years of electric resistoance strain gages technique (4)[J]. Sensor worle, 1999, 1:15-25. http://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ199901002.htm
    [30] Boyden R P, Ferris A T, Johnson W G, et al. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel[R]. NASA-TM-89039, 1987.
    [31] Popernack T G, Adcock J B. Cryogenic temperature effects on sting-balance deflections in the national transonic facility[R]. NASA TM-4157, 1990.
    [32] Hereford J, Parker P A, Rhew R D. TIGER:development of thermal gradient compensation algorithms and techniques[R]. NASA Technical Report 200400865533, 2004.[WX)][LL][WX (4.5mm, 75.5mm]
    [33] Landman D, Yoder D, Reinholtz C, et al. A design of experiments approach applied to wind tunnel balance calibration at arnold engineering development complex[R]. AIAA-2013-1019, 2013.
    [34] Ferris A T. Strain gauge balance calibration and data reduction at NASA Langley research center[C]//First International Symposium on Strain Gauge Balances, Hampton, Virginia, 1996.
    [35] Ewald B, Polanski L. The cryogenic balance design and balance calibration methods[R]. AIAA-92-4001, 1992.
    [36] Ewald B. Theory and praxis of internal strain gage balance calibration for conventional and cryogenic[R]. AIAA-94-2584, 1994.
    [37] Polansky L, Kutney J T. A new working automatic calibration machine for wind tunnelinternal force balances[R]. AIAA-93-2467, 1993.
    [38] Hufnagel K. TUD calibration machine, production version and upgrades[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
    [39] Parker P A, Morton M, Draper N. et al. A single-vector force calibration method featuring the modern design of experiments[R]. AlAA-2001-0170, 2001.
    [40] Parker P A, Liu T S. Uncertainty analysis of the single-vector force balance calibration system[R]. AIAA-2002-2792, 2002.
    [41] Jones S M, Rhew R D. Recent developments and status of the Langley single vector balance calibration system (SVS)[C]//Fourth International Symposium on Strain Gauge Balances, San Diego, California, 2004.
    [42] Kimmel W M. Cryogenic model materials[R]. AIAA-2001-0757, 2001.
    [43] Devin E B. Review of potential wind tunnel balance technologies[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
    [44] Hare D A, Moore T C. Characteristics of extrinsic fabry-perot interferometric (EFPI) fiber-optic strain gages[R]. NASA/TP-2000-210639, 2000.
    [45] Jansen U, Hildebrand B. The 20mm advantage-shrinking an internal balance to meet clients' demands[R]. AIAA-2013-0416, 2013.
    [46] Jansen U, Quest J. SG balance improvements are slowing down-Europe can not wait that long[R]. AIAA-2007-351, 2007.
    [47] Semmelmann J. Design, calibration and commissioning of a small cryogenic high load balance for ETW[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  118
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-02
  • 修回日期:  2016-09-21
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日