留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

围压对高压水射流冲击压力影响规律

李敬彬 李根生 黄中伟 宋先知 贺振国

李敬彬, 李根生, 黄中伟, 等. 围压对高压水射流冲击压力影响规律[J]. 实验流体力学, 2017, 31(2): 67-72. doi: 10.11729/syltlx20160074
引用本文: 李敬彬, 李根生, 黄中伟, 等. 围压对高压水射流冲击压力影响规律[J]. 实验流体力学, 2017, 31(2): 67-72. doi: 10.11729/syltlx20160074
Li Jingbin, Li Gensheng, Huang Zhongwei, et al. Effect of confining pressure on the axial impact pressure of hydraulic jetting[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 67-72. doi: 10.11729/syltlx20160074
Citation: Li Jingbin, Li Gensheng, Huang Zhongwei, et al. Effect of confining pressure on the axial impact pressure of hydraulic jetting[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 67-72. doi: 10.11729/syltlx20160074

围压对高压水射流冲击压力影响规律

doi: 10.11729/syltlx20160074
基金项目: 

国家自然科学基金石油化工联合基金重点基金 U1562212

详细信息
    作者简介:

    李敬彬 (1989-), 男, 山东沂水人, 中国石油大学 (北京) 校聘博士后。研究方向:油气井流体力学。通信地址:北京市昌平区府学路18号 (102249)。E-mail:lijingbin555@hotmail.com

    通讯作者:

    李根生, E-mail: ligs@cup.edu.cn

  • 中图分类号: TE21;TP601

Effect of confining pressure on the axial impact pressure of hydraulic jetting

  • 摘要: 高压水射流在油气资源钻探与增产领域应用日益广泛。但在井下作业时,射流一般处在很高的围压环境中,围压究竟对射流结构和能量传递有何影响是长期困扰着钻井领域的重要问题之一。通过围压水射流冲击压力测试装置,测得了不同围压条件下轴线冲击压力及射流压力。研究发现:憋压加载围压条件下,当围压小于喷嘴流量系数平方倍射流压力时,射流压力基本不变;围压较大时,射流压力随围压线性增加;围压对1倍喷距内的高压射流冲击压力基本没有影响;无因次射流轴向水力静压与无因次围压的3.3次方成正比,随无因次喷距线性增加,但当无因次围压超过阀值(0.6~0.7),水力静压将随围压线性增加;无因次轴线冲击压力与无因次围压的0.15次方成反比,而随无因次喷距线性减小,但超过阀值后基本不变。本研究可为钻井水力参数设计、冲砂洗井等井下作业提供一定参考。
  • 图  1  围压水射流冲击压力测试装置示意图[14]

    Figure  1.  Sketch of the hydraulic jet impact pressure measuring device[14]

    图  2  多功能数据采集系统

    Figure  2.  Multi-channel data acquisition system

    图  3  实验用喷嘴

    Figure  3.  Sketch of the nozzle

    图  4  无围压条件下高压射流轴心速度分布

    Figure  4.  Distribution of centerline velocity of hydraulic jet without confining pressure

    图  5  围压对射流压力的影响

    Figure  5.  Effect of confining pressure on jet pressure

    图  6  无因次实测总压力与无因次围压关系曲线

    Figure  6.  Effect of the dimensionless confining pressure on the dimensionless measured total pressure

    图  7  y函数拟合结果

    Figure  7.  Results of y function fitting

    图  8  p函数拟合结果

    Figure  8.  Results of p function fitting

    图  9  系数a、b拟合结果

    Figure  9.  Results of parameter a and b fitting

    图  10  无因次水力静压随无因次围压变化曲线

    Figure  10.  Curves of the dimensionless hydrostatic pressure and the dimensionless confining pressure

    图  11  无因次轴向冲击压力随无因次围压变化曲线

    Figure  11.  Curves of the dimensionless axial impact pressure and the dimensionless confining pressure

    表  1  围压对高压射流冲击压力影响实验参数设置

    Table  1.   Setup of the experiment for the effect of ambient pressure on hydraulic jet

    No. Flow rate/(L·s-1) Standoff distance/mm Ambient pressure/MPa
    1 0.62 3, 6, 9, 12, 15, 18, 21 0, 1, 2, 3, 4, 5, 6, 7
    2 0.67 3, 6, 9, 12, 15, 18, 21 0, 1, 2, 3, 4, 5, 6, 7
    3 0.77 3, 6, 9, 12, 15, 18, 21 0, 1, 2, 3, 4, 5, 6, 7
    下载: 导出CSV
  • [1] Maurer W C, Heilhecker J K. Hydraulic jet drilling[C]. Drilling and Rock Mechanics Symposium, Austin, Texas, 1969. SPE-2434-MS. doi:http://dx.doi.org/10.2118/2434-MS.
    [2] Song X, Li G, Huang Z, et al. Mechanism and characteristics of horizontal-wellbore cleanout by annular helical flow[J]. SPE J, 2014, 19(01):45-54. doi:http://dx.doi.org/10.2118/156335-PA.
    [3] 曲海, 李根生, 黄中伟, 等.水力喷射分段压裂密封机理[J].石油学报, 2011, (03):514-517. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103024.htm

    Qu H, Li G S, Huang Z W, et al. Sealing mechanism of the hydrajet stepwise fracturing[J]. Acta Petrolei Sinica, 2011, (03):514-517. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103024.htm
    [4] 李根生, 史怀忠, 沈忠厚, 等.水力脉冲空化射流钻井机理与试验[J].石油勘探与开发, 2008, (02):239-243. doi: 10.3321/j.issn:1000-0747.2008.02.018

    Li G S, Shi H Z, Shen Z H, et al. Mechanisms and tests for hydraulic pulsed cavitating jet assisted drilling[J]. Petroleum Exploration and Development, 2008, (02):239-243. doi: 10.3321/j.issn:1000-0747.2008.02.018
    Feenstra R, Van Leeuwen J J M. Full-scale experiments on jets in impermeable rock drilling[J]. Journal of Petroleum Techno-logy, 1964, 16(03):329-336. SPE-694-PA. doi:http://dx.doi.org/10.2118/694-PA.
    [6] Kolle J J, Otta R, Stang D L. Laboratory and field testing of an ultra-high-pressure, jet-assisted drilling system[C]. SPE/IADC Drilling Conference, Amsterdam, Netherlands, 1991. SPE-22000-MS. doi:http://dx.doi.org/10.2118/22000-MS.
    [7] Khorshidian H, Butt S D, Arvani F. Influence of high velocity jet on drilling performance of PDC bit under pressurized condition[C]. American Rock Mechanics Association Source 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, 2014. ARMA-2014-7465.
    [8] Albertson M L, Dai Y B, Jensen R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers, 1950, 115(1):639-664.
    [9] McLean R H. Crossflow and impact under jet bits[J]. Journal of Petroleum Technology, 1964, 16(11):1299-1306. SPE-889-PA. doi:http://dx.doi.org/10.2118/889-PA.
    [10] Shen Z, Sun Q. Study of pressure attenuation of a submerged, nonfree jet and a method of calculation for bottomhole hydraulic parameters[J]. SPE Drilling Engineering, 1988, 3(01):69-76. SPE-14869-PA. doi:http://dx.doi.org/10.2118/14869-PA.
    [11] Feenstra R, Van Steveninck J. Rock cutting by jets:a promising method of oil well drilling[J]. Society of Petroleum Engineers, 1974. SPE-4923-MS.
    [12] Alberts D G, Hashish M. Evaluation of submerged high-pressure waterjets for deep ocean applications[C]. The Sixth International Offshore and Polar Engineering Conference, Los Angeles, California, USA, 1996. ISOPE-I-96-006.
    [13] Surjaatmadja J B, Bailey A J, Sierra S A. Hydrajet testing under deep-well conditions points to new requirements for hard-rock perforating[J]. SPE Drilling & Completion, 2010, 25(03):372-379. SPE-122817-PA. doi:http://dx.doi.org/10.2118/122817-PA.
    [14] Liao H, Li G, Yi C, et al. Experimental study on the effects of hydraulic confining pressure on impacting characteristics of jets[J]. Atomization and Sprays, 2012, 22(3):227-238. doi: 10.1615/AtomizSpr.v22.i3
    [15] Khorshidian H, Butt S D, Arvani F. Influence of high velocity jet on drilling performance of PDC bit under pressurized condition[C]. American Rock Mechanics Association Source 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, 2014. ARMA-2014-7465.
    [16] 袁恩熙.工程流体力学[M].北京:石油工业出版社, 1986:77-78.

    Yuan E X. Engineering fluid mechanics[M]. Beijing:Petroleum Industry Press, 1986:77-78.
    [17] 沈忠厚.水射流理论与技术[M].东营:石油大学出版社, 1998:51-52.

    Shen Z H. Hydraulic jet theory and technology[M]. Dong-ying:University of Petroleum Press, 1998:51-52.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  130
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-29
  • 修回日期:  2016-12-15
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日