留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子图像叠加方法的微柱群绕流流场测量

王昊利 徐明

王昊利, 徐明. 基于粒子图像叠加方法的微柱群绕流流场测量[J]. 实验流体力学, 2016, 30(6): 59-65. doi: 10.11729/syltlx20160047
引用本文: 王昊利, 徐明. 基于粒子图像叠加方法的微柱群绕流流场测量[J]. 实验流体力学, 2016, 30(6): 59-65. doi: 10.11729/syltlx20160047
Wang Haoli, Xu Ming. Velocity measurements for flows around micro-cylinder array based on image overlapping[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 59-65. doi: 10.11729/syltlx20160047
Citation: Wang Haoli, Xu Ming. Velocity measurements for flows around micro-cylinder array based on image overlapping[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 59-65. doi: 10.11729/syltlx20160047

基于粒子图像叠加方法的微柱群绕流流场测量

doi: 10.11729/syltlx20160047
基金项目: 

国家自然科学基金 11472261

国家自然科学基金 11172287

金陵科技学院高层次人才启动项目 2016

详细信息
    通讯作者:

    王昊利(1972-), 男, 山西芮城人, 博士, 教授。研究方向:微纳尺度流动可视化实验技术。通信地址:江苏南京江宁区弘景大道99号金陵科技学院机电工程学院(211169)。E-mail:whl@cjlu.edu.cn

  • 中图分类号: O352

Velocity measurements for flows around micro-cylinder array based on image overlapping

  • 摘要: 分析了相关深度对Micro-PIV速度场测量的影响,说明采用低密度粒子图像叠加技术能够有效减小相关深度,提高速度测量的准确性。将该方法应用于微柱群绕流流场的分层测量,雷诺数分别取0.8~3.6,在此基础上计算了空间平均速度。将分层速度场和平均速度廓线与采用平均相关技术获得的结果进行了比较。结果表明,采用低密度粒子图像叠加方法获得的全场绕流速度分布更为合理,通道底部和顶部近壁区的平均“伪滑移速度”分别减小了22.7%和17.2%,通道中心平均速度峰值增加了5.2%。
  • 图  1  相关深度对相关函数的影响示意图。(a)近壁区相关峰值的正偏差,出现“伪滑移速度”; (b)中心层平面相关峰值的负偏差。图中±Δx为位移偏差; Φ, ΦSΦB分别为总相关函数, 焦平面粒子及背景粒子图像对相关函数的贡献; VmeasVreal分别为速度测量值和真实值。

    Figure  1.  The influence of DOC on the correlation function. (a) Positive deviation of correlation peak near wall surface, "pseudo-slip flow"; (b) Negative deviation of correlation peak on center plane. where±Δx is the displacement deviation; Φ, ΦS and ΦB are the total correlation function and correlation function contributed by in-plane particle images and background particle images, respectively; Vmeas and Vreal are the measurement value and real value of velocity, respectively.

    图  2  图像叠加法处理流程[16]

    Figure  2.  Flow chart of the method of image overlapping[16]

    图  3  测量系统原理图

    Figure  3.  Particle image between micro-cylinder arrays

    图  4  低密度粒子图像叠加方法计算速度场

    Figure  4.  Velocity calculation by the image overlapping

    图  5  微柱群粒子图像

    Figure  5.  Particle image between micro-cylinder arrays

    图  6  采用低密度粒子图像叠加方法获得的分层速度场分布

    Figure  6.  Velocity on multi-fluid planes by image overlapping method

    图  7  采用平均相关法获得的分层速度场分布

    Figure  7.  Velocity on multi-fluid planes by correlation averaging method

    图  8  空间平均速度廓线

    Figure  8.  Profiles of spatial averaged velocity

    表  1  2种方法的壁面速度

    Table  1.   Velocities on two walls by two methods

    Re0.81.21.62.02.42.83.23.6平均值
    Q/(μl·s-1)14.321.528.635.842.950.157.264.4/
    底面VS, a/(mm·s-1)8.614.718.720.527.325.636.037.1/
    底面VNDS, a0.430.490.470.410.460.370.450.410.44
    底面VS, o/(mm·s-1)5.411.512.518.421.217.630.433.5/
    底面VNDS, o0.270.380.310.370.360.250.380.370.34
    底面δS/%-37.2-21.8-33.2-10.2-22.3-31.3-15.6-9.7-22.7
    顶面VS, a/(mm·s-1)10.612.312.621.921.328.929.537.6/
    顶面VNDS, a0.530.410.320.440.360.410.370.420.41
    顶面VS, o/(mm·s-1)9.110.713.516.313.820.523.235.1/
    顶面VNDS, o0.460.360.340.330.230.290.290.390.34
    顶面δS/%-14.2-13.07.1-25.6-35.2-29.1-21.4-6.6-17.2
    下载: 导出CSV

    表  2  2种方法的峰值速度

    Table  2.   Peak velocities by two methods

    Re0.81.21.62.02.42.83.23.6平均值
    Q/(μl·s-1)14.321.528.635.842.950.157.264.4/
    VP, a/(mm·s-1)24.231.746.354.166.375.389.598.2/
    VNDP, a1.221.061.161.091.111.081.121.101.12
    VP, o/(mm·s-1)24.73545.858.772.278.993.8101.3/
    VNDP, o1.241.171.151.181.211.131.181.131.17
    δS/%2.110-1.18.58.94.84.83.25.2
    下载: 导出CSV
  • [1] Yoshida H. The wide variety of possible applications of micro-thermofluid control[J]. Microfluid Nanofluid, 2005, 1:289-300. doi: 10.1007/s10404-004-0014-7
    [2] Yeom J, Agonafer D D, Han J H, et al. Low Reynolds number flow across an array of cylindrical microposts in a microchannel and figure-of-merit analysis of micropost-filled microreactors[J]. J Micromech Microeng, 2009, 19:065025. doi: 10.1088/0960-1317/19/6/065025
    [3] Tamayol A, Khosla A, Gray, et al. Bahrami creeping flow through ordered arrays of micro-cylinders embedded in a rectangular minichannel[J]. Int J Heat Mass Transfer, 2012, 55(15-16):3900-3908. doi: 10.1016/j.ijheatmasstransfer.2012.03.008
    [4] Wang D M, Tarbell J M. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells[J]. J Biomech Eng, 1995, 117:358-363. doi: 10.1115/1.2794192
    [5] Tada S, Tarbell J M. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells[J]. Amercian Journal of Physiology-Heart and Circulatory, 2000, 278:1589-1597. https://www.researchgate.net/publication/12541875_Interstitial_flow_through_the_internal_elastic_lamina_affects_shear_stress_on_arterial_smooth_muscle_cells
    [6] Nagrath S, Sequist L V, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology[J]. Nature, 2007, 450:1235-1239. doi: 10.1038/nature06385
    [7] Santiago J G, Wereley S T, Meinhart C D. A particle image velocimetry system for microfluidics[J]. Exp Fluids, 1998, 25(4):316-319. doi: 10.1007/s003480050235
    [8] Wereley S T, Meinhart C D. Recent advances in micro-particle image velocimetry[J]. Annu Rev Fluid Mech, 2010, 42:557-576. doi: 10.1146/annurev-fluid-121108-145427
    [9] Wereley S T, Meinhart C D, Gray M H B. Depth effects in volume illuminated particle image velocimetry[C]. The Third International Workshop on Particle Image Velocimetry, Santa Barbara, 1999:545-550.
    [10] Olsen M G, Adrian R J. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry[J]. Exp Fluids, 2000, 29:S166-S174. doi: 10.1007/s003480070018
    [11] Chuong V, Nguyen A F, Josie C. Improvement of measurement accuracy in micro PIV by image overlapping[J]. Exp Fluids, 2010, 49:701-712. doi: 10.1007/s00348-010-0837-9
    [12] Wereley S T, Gui L, Meinhart C D. Advanced algorithms for microscale particle image velocimetry[J]. AIAA J, 2002, 40:1047-1055. doi: 10.2514/2.1786
    [13] Massimiliano R, Rodrigo S, Christian C, et al. On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV[J]. Exp Fluids, 2012, 52:1063-1075. doi: 10.1007/s00348-011-1194-z
    [14] 王昊利, 王元. Micro-PIV--粒子图像测速技术的新进展[J].力学进展, 2005, 35(1):77-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501008.htm

    Wang H L, Wang Y. Micro-PIV--the new trend of Particle Image Velocimetry[J]. Advance in Mechanics, 2005, 35(1):77-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501008.htm
    [15] Nam-Trung N, Steven T, Wereley S T. Fundamentals and applications of microfluidics[M]. Artech House, Inc, 2002.
    [16] 徐明, 王昊利.基于低密度粒子图像叠加的Micro-PIV速度场测量[J].实验流体力学, 2013, 27(2):106-112. http://www.syltlx.com/CN/abstract/abstract10342.shtml

    Xu M, Wang H L. The micro-PIV measurement based on the low particle density[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):106-112. http://www.syltlx.com/CN/abstract/abstract10342.shtml
    [17] Bitsch L, Olesen L, Westergaard C, et al. Micro particle-image velocimetry of bead suspensions and blood flows[J]. Exp Fluids, 2005, 39:507-513. doi: 10.1007/s00348-005-0967-7
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  79
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日