留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

屋面雪荷载分布风洞试验研究

王卫华 黄汉杰

王卫华, 黄汉杰. 屋面雪荷载分布风洞试验研究[J]. 实验流体力学, 2016, 30(5): 23-28. doi: 10.11729/syltlx20160039
引用本文: 王卫华, 黄汉杰. 屋面雪荷载分布风洞试验研究[J]. 实验流体力学, 2016, 30(5): 23-28. doi: 10.11729/syltlx20160039
Wang Weihua, Huang Hanjie. Study of snow-load distribution on roof by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 23-28. doi: 10.11729/syltlx20160039
Citation: Wang Weihua, Huang Hanjie. Study of snow-load distribution on roof by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 23-28. doi: 10.11729/syltlx20160039

屋面雪荷载分布风洞试验研究

doi: 10.11729/syltlx20160039
详细信息
    通讯作者:

    王卫华(1972-), 男, 安徽合肥人, 博士, 高级工程师。研究方向:结构风工程。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:wwhblue@163.com

  • 中图分类号: V211.73

Study of snow-load distribution on roof by wind tunnel test

  • 摘要: 为了预测屋面雪荷载分布,采用细石英砂粒子模拟风吹雪进行风洞试验研究,通过降雪模拟和均匀重分布试验,获得了几种典型屋面的积雪系数分布,并与中国荷载规范进行了比较。结果表明:当试验风速达到阈值风速后,测量的风洞流场有效气动粗糙长度随着风速增加而增大,显示出风吹雪边界层流场的典型特性;试验获得的阶梯形屋面积雪系数均小于中国荷载规范值;单跨双坡屋面的迎风屋面积雪系数可能会超过荷载规范值,特别是20°屋面,而10°屋面积雪系数随时间发展逐渐减小,并最终在规范值之内。在模拟降雪试验中,双跨双坡屋面的第一个迎风屋面积雪系数相对较大,但小于荷载规范值;在均匀重分布试验中,双跨双坡屋面的最大积雪系数均在第一个背风屋面的屋脊后方,其值接近1.5,超过了荷载规范值。
  • 图  1  试验模型示意图

    Figure  1.  Scheme of test models

    图  2  风洞试验段轮廓

    Figure  2.  Picture of wind tunnel test section

    图  3  模型风洞试验照片

    Figure  3.  Model in the test

    图  4  测量的风速剖面

    Figure  4.  Wind speed profiles

    图  5  有效气动粗糙长度拟合

    Figure  5.  Effective aerodynamic-rough length

    图  6  阶梯形屋面积雪系数

    Figure  6.  Snow coefficients distribution on stepped roof

    图  7  10°单跨双坡屋面积雪系数

    Figure  7.  Snow coefficients distribution on 10° gable roof

    图  8  10°双跨双坡屋面积雪系数

    Figure  8.  Snow coefficients distribution on 10° dual-span gable roof

    图  9  2种单跨双坡屋面积雪系数

    Figure  9.  Snow coefficients distribution on gable roofs

    图  10  两种双跨双坡屋面积雪系数

    Figure  10.  Snow coefficients distribution on dual-span gable roofs

    表  1  粒子属性及主要参数

    Table  1.   Particle properties and typical similitude parameters

    粒子属性及参数石英砂雪粒
    平均直径/mm0.150.1~0.5
    休止角/(°)31>40
    u*t /(m·s-1)0.2160.118~0.28
    wf/(m·s-1)2.00.31~0.75
    u*t3/(2)307.0~70.0
    u*/u*t1.042~1.1020.66~7.93
    wf /u*8.4~8.890.327~3.93
    wf /u*t9.262.16~5
    下载: 导出CSV

    表  2  降雪模拟试验h0值(单位:mm)

    Table  2.   The h0 values in snowfall simulation tests (Unit: mm)

    阶梯屋面10°单跨双坡10°双跨双坡
    Test-122.020.820.5
    Test-223.322.5-
    Test-327.628.7-
    下载: 导出CSV
  • [1] Feld J, Carper K. Construction Failure[M]. 2nd ed. New York:John Wiley & Sons, 1997.
    [2] Perski Z, Leijen F van, Hanssen R. Applicability of psinsar for building hazard identification:Study of the 29 January 2006 Katowice Exhibition Hall collapse and the 24 February 2006 Moscow Basmanny Market collapse[C]//Proceedings of the Envisat Symposium 2007, Monteux, Switzerland, 2007.
    [3] Lomovtsev E, Grishin A. Market collapse-Moscow's largest-ever man-made disaster[J]. Current Digest of the Russian Press, 2006, 58(9):4-5.
    [4] 王元清, 胡宗文, 石永久, 等.门式刚架轻型房屋钢结构雪灾事故分析与反思[J].土木工程学报, 2009, 42(3):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903015.htm

    Wang Y Q, Hu Z W, Shi Y J, et al. Analysis and reflection on snow disaster accidents of steel structures of light-weight buildings with portal frames[J]. China Civil Engineering Journal, 2009, 42(3):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903015.htm
    [5] 蓝声宁, 钟新谷.湘潭轻型钢结构厂房雪灾受损分析与思考[J].土木工程学报, 2009, 42(3):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903016.htm

    Lan S N, Zhong X G. Damage diagnoses and lessons learnt from the failure of light-steel structure by heavy snow in Xiangtan[J]. China Civil Engineering Journal, 2009, 42(3):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903016.htm
    [6] 周昌农.南方雪灾中轻钢结构房屋灾情调查及原因分析[J].城市建设, 2009, 32:286-287. http://d.wanfangdata.com.cn/Periodical/csjsysywd200932189

    Zhou C N. Damage diagnoses and lessons learnt from the failure of light-steel structure by heavy snow in South China[J]. Chengshi Jianshe Yu Shangye Wangdian, 2009, 32(46):286-287. http://d.wanfangdata.com.cn/Periodical/csjsysywd200932189
    [7] 张德海, 南波, 舒铮.雪灾后某网架破坏分析及加固[J].沈阳建筑大学学报(自然科学版), 2010, 26(1):62-67. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201001011.htm

    Zhang D H, Nan B, Shu Z. Destroying analysis and reinforcement research on space truss structure after snowstorms[J]. Journal of shenyang Jianzhu University(Natural Science), 2010, 26(1):62-67. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201001011.htm
    [8] 顾明, 黄友钦, 赵明伟.风雪共同作用下门式刚架厂房的动力稳定性[J].同济大学学报, 2011, 39(9):1266-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201109004.htm

    Gu M, Huang Y Q, Zhao M W. Dynamic instability of light-weight steel structures with portal frames under wind and snow loads[J]. Journal of Tongji University, 2011, 39(9):1266-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201109004.htm
    [9] Tsuchiya M, Tomabechi T, Hongoa T, et al. Wind effects on snowdrift on stepped flat roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90:1881-1892. doi: 10.1016/S0167-6105(02)00295-7
    [10] Gordon M, Taylor P A. Measurements of blowing snow, Part I:Particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada[J]. Cold Regions Science and Technology, 2009, 55(1):63-74. doi: 10.1016/j.coldregions.2008.05.001
    [11] O'Rourke M, Degaetano A, Tokarczyk J D. Analytical simulation of snow drift loading[J]. Journal of Structural Engineering, 2005, 131:660-667. doi: 10.1061/(ASCE)0733-9445(2005)131:4(660)
    [12] Tominaga Y, Okaze T, Mochida A. CFD modeling of snowdrift around a building:An overview of models and evaluation of a new approach[J]. Building and Environment, 2011, 46(4):899-910. doi: 10.1016/j.buildenv.2010.10.020
    [13] 王卫华, 廖海黎, 李明水.基于时变边界屋面积雪分布数值模拟[J].西南交通大学学报, 2013, 48(5):851-967. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201305011.htm

    Wang W H, Liao H L, Li M S. Numerical simulation of wind-induced roof snow distributions based on time variable boundary[J]. Journal of Southwest Jiao-tong University, 2013, 48(5):851-967. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201305011.htm
    [14] O'Rourke M, Degaetano A, Tokarczyk J D. Snow drifting transport rates from water flume simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92:1245-1264. doi: 10.1016/j.jweia.2004.08.002
    [15] Thiis T K, Barfoed P, Delpech P, et al. Penetration of snow into roof constructions-Wind tunnel testing of different eave cover designs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9-11):1476-1485. doi: 10.1016/j.jweia.2007.02.017
    [16] Kimbar G, Flaga A. Wind tunnel tests of snow load redistribution on large span flat roofs[C]. The 13th International Conference on Wind Engineering, Amsterdam, 2011.
    [17] 王卫华, 廖海黎, 李明水.风致屋面积雪分布风洞试验研究[J].建筑结构学报, 2014, 35(5):143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201405022.htm

    Wang W H, Liao H L, Li M S. Wind tunnel test on wind-induced roof snow distribution[J]. Journal of Building Structures, 2014, 35(5):143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201405022.htm
    [18] Zhou X Y, Kang L Y, Yuan X M, et al. Wind tunnel test of snow redistribution on flat roofs[J]. Cold Regions Science and Technology, 2016, 127:49-56. doi: 10.1016/j.coldregions.2016.04.006
    [19] 中华人民共和国建设部. GB 50009-2012建筑结构荷载规范[S].北京:中国建筑工业出版社, 2012.
    [20] Kind R J. Snowdrifting:a review of modeling methods[J]. Cold Regions Science and Technology, 1986, 12(3):217-228. doi: 10.1016/0165-232X(86)90036-4
    [21] Beyers J H M, Harms T M. Outdoors modelling of snowdrift at SANAE ⅣResearch Station, Antarctica[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91:551-569. doi: 10.1016/S0167-6105(02)00409-9
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  75
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-06-03
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日