留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击作用下液滴在环境液体中的变形破碎行为

廖斌 张桂夫 王鲁海 朱雨建 杨基明

廖斌, 张桂夫, 王鲁海, 等. 冲击作用下液滴在环境液体中的变形破碎行为[J]. 实验流体力学, 2016, 30(5): 9-16. doi: 10.11729/syltlx20160029
引用本文: 廖斌, 张桂夫, 王鲁海, 等. 冲击作用下液滴在环境液体中的变形破碎行为[J]. 实验流体力学, 2016, 30(5): 9-16. doi: 10.11729/syltlx20160029
Liao Bin, Zhang Guifu, Wang Luhai, et al. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. doi: 10.11729/syltlx20160029
Citation: Liao Bin, Zhang Guifu, Wang Luhai, et al. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. doi: 10.11729/syltlx20160029

冲击作用下液滴在环境液体中的变形破碎行为

doi: 10.11729/syltlx20160029
基金项目: 

国家自然科学基金项目 11572313

安徽省高等教育提升计划省级自然科学研究一般项目 TSKJ2015B03

详细信息
    作者简介:

    廖斌(1985-), 男, 江西抚州人, 博士研究生。研究方向:实验多相流体力学。通信地址:安徽省合肥市蜀山区黄山路443号中科大西校区(230027)。E-mail:liaobin@mail.ustc.edu.cn

    通讯作者:

    朱雨建, E-mail:yujianrd@ustc.edu.cn

  • 中图分类号: O359+.1

Deformation and breakup behaviors of a drop in ambient liquid under impact

  • 摘要: 采用基于液-液体系的坠落实验装置对冲击作用下单个液滴在环境液体中的变形破碎行为进行了实验研究。针对高速摄影捕捉到的5种液滴典型变形破碎模式进行了定量化考察和规律性分析。结果表明,液滴初始直径、液滴与环境液体的密度比和粘度比、界面张力系数以及坠落高度等实验参数相互组合可以得到相似的实验结果,其中We数是区分液滴变形破碎模式的关键参数。进一步研究液滴变形破碎模式与无量纲参数的依赖关系发现,在1 < We < 700、0.001 < Oh < 0.005的实验条件范围内,液滴变形破碎模式与Oh数无明显依赖关系,而在We数相近情况下,液滴变形破碎模式呈现明显的相似性。
  • 图  1  实验装置示意图

    Figure  1.  Schematic of experimental setup

    图  2  不同坠落高度的冲击加速度曲线

    Figure  2.  Impact acceleration curves of different falling heights

    图  3  液滴5种典型变形破碎模式序列图:(A)振荡模式;(B)袋状模式;(C)帽状模式;(D)竹节状模式;(E)蘑菇状模式

    Figure  3.  Sequential images showing five modes of drop deformation and breakup: (A) oscillatory mode; (B) bag mode; (C) cap mode; (D) bamboo mode; (E) mushroom mode

    图  4  液滴内部结构剖视图:(a)帽状模式;(b)竹节状模式;(c)蘑菇状模式

    Figure  4.  Structures of the deforming drop: (a) cap mode; (b) bamboo mode; (c) mushroom mode

    图  5  液滴变形形态相似性验证图:(a1)~(a3)袋状模式;(b1)~(b3)帽状模式;(c1)~(c3)竹节状模式

    Figure  5.  Similarity verification of drop deformation: (a1)~(a3) bag mode; (b1)~(b3) cap mode; (c1)~(c3) bamboo mode

    图  6  液滴变形形态相似性与无量纲参数的对应关系

    Figure  6.  Relationship of non-dimensional parameters and drop deformation images

    图  7  Vamax/V0We数的依赖关系图

    Figure  7.  Relationship of Vamax/V0 and the Weber number

    图  8  液滴变形破碎模式之间的转变过程图像,上行:(a)袋状模式,(b)过渡模式,(c)帽状模式,(b*)过渡模式剖视图;下行:(d)帽状模式,(e)过渡模式,(f)竹节状模式,(e*)过渡模式剖视图

    Figure  8.  Transition between drop deformation and breakup modes, upper row: (a) bag mode, (b) transition mode, (c) cap mode, (b*) cross-sectional view of transition mode; lower row: (d) cap mode, (e) transition mode, (f) bamboo mode, (e*) Cross-sectional view of transition mode

    图  9  We-Oh液滴变形破碎模式分布图

    Figure  9.  We-Oh modes map for drop deformation and breakup

    表  1  液滴与环境液体的相关物性参数

    Table  1.   Related properties of drop and ambient fluid

    Fluid typeDensity
    /(g·cm-3)
    Viscosity
    /(mPa·s)
    Interface tension coefficient
    /(mN·m-1)
    Drop1050~16300.6~2.414.49~25.01
    Ambient fluid1015~10352.8~4.6
    下载: 导出CSV

    表  2  液滴5种典型变形破碎模式所对应的实验条件

    Table  2.   Typical experimental conditions for five modes of drop deformation and breakup

    Mode Fig.3d0/mmρd/ρaμd/μaσ/(mN·m-1)h/m
    A7.21.1290.70525.010.3
    B6.01.1700.29616.500.8
    C6.01.1700.29616.501.5
    D4.31.5230.20215.490.6
    E4.71.5670.14214.691.3
    下载: 导出CSV

    表  3  图 5所对应的实验参数

    Table  3.   Corresponding experimental conditions for the results of Fig.5

    Deformation Fig.5d0/mmρd/ρaμd/μaσ/(mN·m-1)h/m
    a16.01.1700.29616.500.60
    a25.31.2870.44718.970.30
    a35.01.4340.35218.620.15
    b16.01.1700.29616.501.50
    b26.21.3440.41718.630.50
    b35.31.2870.44718.970.80
    c14.31.5230.20215.490.60
    c24.11.5020.21216.110.90
    c34.21.5630.16114.690.60
    下载: 导出CSV
  • [1] Lane W R. Shatter of drops in streams of air[J]. Ind Eng Chem, 1951, 43(6):1312-1317. doi: 10.1021/ie50498a022
    [2] Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3):289-295. doi: 10.1002/(ISSN)1547-5905
    [3] Hanson A R, Domich E G, Adams H S. Shock tube investigation of the breakup of drops by air blasts[J]. Phys Fluids, 1963, 6(8):1070-1080. doi: 10.1063/1.1706864
    [4] Simpkins P G, Bales E L.Water-drop response to sudden acce-lerations[J]. J Fluid Mech, 1972, 55(4):629-639. doi: 10.1017/S0022112072002058
    [5] Krzeczkowski S A. Measurement of liquid droplet disintegration mechanisms[J]. Int J Multiphase Flow, 1980, 6(3):227-239. doi: 10.1016/0301-9322(80)90013-0
    [6] Wierzba A, Takayama K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. doi: 10.2514/3.10044
    [7] Yoshida T, Takayama K. Interaction of liquid droplets with planar shock waves[J]. Trans ASME J Fluids Engng, 1990, 112(4):481-486. doi: 10.1115/1.2909431
    [8] Wierzba A. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers[J]. Experiments in Fluids, 1990, 9(1):59-64. doi: 10.1007%2FBF00575336
    [9] Hsiang L P, Faeth G M. Near-limit drop deformation and secondary breakup[J]. Int J Multiphase Flow, 1992, 18(5):635-652. doi: 10.1016/0301-9322(92)90036-G
    [10] Hsiang L P, Faeth G M. Drop properties after secondary breakup[J]. Int J Multiphase Flow, 1993, 19(5):721-735. doi: 10.1016/0301-9322(93)90039-W
    [11] Liu Z, Reitz R D. An analysis of the distorsion and breakup mechanisms of high speed liquid drops[J]. Int J Multiphase Flow, 1997, 23(4):631-650. doi: 10.1016/S0301-9322(96)00086-9
    [12] Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. Int J Multiphase Flow, 1999, 25(6):1263-1303. https://www.researchgate.net/publication/222457588_Breakup_of_a_liquid_drop_suddenly_exposed_to_a_high-speed_airstream
    [13] Lee C H, Reitz R D. An experomental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J]. Int J Multiphase Flow, 2000, 26(2):229-244. doi: 10.1016/S0301-9322(99)00020-8
    [14] Joseph D D, Beavers G S, Funada T. Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers[J]. J Fluid Mech, 2002, 453:109-132. https://www.researchgate.net/publication/231787206_Rayleigh-Taylor_instability_of_viscoelastic_drops_at_high_Weber_numbers
    [15] Theofanous T G, Li G J, Dinh T N. Aerobreakup in rarefied supersonic gas flows[J]. Trans ASME J Fluids Engng, 2004, 126(4):516-527. doi: 10.1115/1.1777234
    [16] Theofanous T G, Li G J, Dinh T N, et al. Aerobreakup in disturbed subsonic and supersonic flow fields[J]. J Fluid Mech, 2007, 593:131-170. https://www.researchgate.net/profile/Guangjun_Li2/publication/232005867_Aerobreakup_in_disturbed_subsonic_and_supersonic_flow_fields/links/564216c908aebaaea1f8b869.pdf?origin=publication_detail
    [17] Theofanous T G, Li G. On the physics of aerobreakup[J]. Phys Fluids, 2008, 20(5):052103. doi: 10.1063/1.2907989
    [18] Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. Int J Multiphase Flow, 1987, 13(6):741-757. doi: 10.1016/0301-9322(87)90063-2
    [19] Gelfand B E. Droplet breakup phenomena in flows with velocity lag[J]. Progress in Energy and Combustion Science, 1996, 22(3):201-265. doi: 10.1016/S0360-1285(96)00005-6
    [20] Guildenbecher D R, Lopez-Rivera C, Sojka P E. Secondary ato-mization[J]. Experiments in Fluids, 2009, 46(3):371-402. doi: 10.1007/s00348-008-0593-2
    [21] Majithia A K, Hall S, Harper L, et al. Droplet breakup quantification and processes in constant and pulsed air flows[C]//Proceedings of the 22nd Conference on Liquid Atomization and Spray Systems (ILASS-Europe), Como Lake, Italy, 2008.
    [22] Kulkarni V, Sojka P E. Bag breakup of low viscosity drops in the presence of a continuous air jet[J]. Phys Fluids, 2014, 26(7):072103. doi: 10.1063/1.4887817
    [23] Mohit J, Surya P R, Gaurav T, et al. Secondary breakup of a drop at moderate Weber numbers[J]. Proceedings of the Royal Society A, 2015, 147:20140930. https://www.researchgate.net/publication/276177709_Secondary_breakup_of_a_drop_at_moderate_Weber_numbers
    [24] Patel P D, Theofanous T G. Hydrodynamic fragmentation of drops[J]. J Fluid Mech, 1981, 103:307-323. http://www.osti.gov/scitech/biblio/5273464
    [25] Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. Int J Multiphase Flow, 1995, 21(4):545-560. doi: 10.1016/0301-9322(94)00095-2
    [26] Landeau M, Deguen R, Olson P. Experiments on the fragmentation of a buoyant liquid volume in another liquid[J]. J Fluid Mech, 2014, 749:478-518. doi: 10.1017/jfm.2014.202
    [27] 熊燃华, 许明, 李耀发, 等.液-液两相介质中液滴在冲击作用下的演变过程[J].中国科学:物理学力学天文学, 2010, 40(6):773-780. http://phys.scichina.com:8083/sciG/EN/Y2010/V40/I6/773

    Xiong R H, Xu M, Li Y F, et al. The deformation and breakup of a drop-in-liquid under an impact loading[J]. Science China Phys, Mech and Astron, 2010, 40(6):773-780. http://phys.scichina.com:8083/sciG/EN/Y2010/V40/I6/773
    [28] Andreas J M, Hauser E A, Tucker W B. Boundary tension by pendant drops[J]. J Phys Chem, 1938, 42(8):1001-1019. http://www.researchgate.net/publication/231423689_Boundary_Tension_by_Pendant_Drops
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  166
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-02
  • 修回日期:  2016-04-15
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日