留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨声速面积律的近场机理研究

王钢林 郑遂

王钢林, 郑遂. 跨声速面积律的近场机理研究[J]. 实验流体力学, 2016, 30(4): 1-6. doi: 10.11729/syltlx20160024
引用本文: 王钢林, 郑遂. 跨声速面积律的近场机理研究[J]. 实验流体力学, 2016, 30(4): 1-6. doi: 10.11729/syltlx20160024
Wang Ganglin, Zheng Sui. Research on mechanism of transonic area rule in near field[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 1-6. doi: 10.11729/syltlx20160024
Citation: Wang Ganglin, Zheng Sui. Research on mechanism of transonic area rule in near field[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 1-6. doi: 10.11729/syltlx20160024

跨声速面积律的近场机理研究

doi: 10.11729/syltlx20160024
详细信息
    通讯作者:

    王钢林(1975-),男,博士,高级工程师。研究方向:飞机总体设计、新概念飞行器、飞机设计方法及相关领域。通信地址:北京市朝阳区安外北苑2号院中国航空研究院(100012)。E-mail:wglxy@china.com

  • 中图分类号: V211.4

Research on mechanism of transonic area rule in near field

  • 摘要: 面积律过于定性的描述给实际的飞机设计工作带来了一定的困惑和问题,其理论推导采用的小扰动线化假设也不适应未来空气动力学设计越来越精细化的发展方向。针对具有典型高速飞行器外形特征的AGARD-B标模,结合CFD和优化方法,探讨了实现最优减阻效果的机身修形形式,得出了较经典跨声速面积律减阻效果更好的结果,给出了比经典面积律更为细致的减阻修形原则。以此为基础,通过对各部件的减阻贡献情况的分析,通过修形前后机体表面阻力、压强及等压线分布的对比,发现面积律减阻的实质是飞行器外形所造成的相邻部件之间的压力传递而形成的有利干扰。应用这一结论,研究并验证了机身收缩剖面形状对于减阻效果的影响。最后经过不同升力系数条件的对比,证明对于不同升力、不同迎角的飞行条件,面积律减阻的效果是相同的。
  • 图  1  跨声速面积律

    Figure  1.  Transonic area law

    图  2  AGARD-B标准模型参数化外形定义

    Figure  2.  Parameter definitions of standard model AGARD-B

    图  3  CFD计算采用的几何数模

    Figure  3.  Geometry model for CFD computation

    图  4  本文方法计算的升力与试验结果的对比

    Figure  4.  Lift comparison between test and computation

    图  5  本文方法计算的阻力与试验结果的对比

    Figure  5.  Drag comparison between test and computation

    图  6  计算数模横截面积分布

    Figure  6.  Cross section distribution of geometry model

    图  7  面积律修形后的计算数模

    Figure  7.  Geometry model modified with transonic area law

    图  8  阻力随机身最大收缩直径所在位置的变化

    Figure  8.  Drag varies with fuselage location of maximum contraction diameter

    图  9  改变机身最大收缩直径的计算数模横截面积分布

    Figure  9.  Cross section distribution of geometry model for changing fuselage maximum reducing diameter

    图  10  不同机身最大收缩直径对减阻效果的影响

    Figure  10.  Drag reduction with various minimal fuselage diameter after contraction

    图  11  面积律减阻前后各部件阻力贡献对比

    Figure  11.  Comparison of drag contributions of different components with/without area rule

    图  12  等直机身的计算数模阻力分布

    Figure  12.  Drag distribution without area rule

    图  13  收缩机身的计算数模阻力分布

    Figure  13.  Drag distribution with area rule

    图  14  等直机身的计算数模压力及等压线分布

    Figure  14.  Pressure distribution and isobar without area rule

    图  15  收缩机身的计算数模压力及等压线分布

    Figure  15.  Pressure distribution and isobar with area rule

    图  16  3种收缩机身导致的阻力随机身最大收缩面积所在位置的变化

    Figure  16.  Drag comparison for three kinds of fuselage with location of maximum contraction area

    图  17  不同升力系数下阻力随机身最大收缩面积所在位置的变化

    Figure  17.  Drag comparison for varying lift with fuselage location of maximum contraction area

    图  18  不同升力系数下阻力随机身最大收缩面积位置的变化

    Figure  18.  Variational drag for varying lift with various minimal fuselage diameter after contracion

    表  1  AGARD-B标准模型参数

    Table  1.   Parameters of standard model AGARD-B

    参数
    参考面积0.0929m2
    机翼前缘后掠角60°
    机翼展弦比2.31
    机翼相对厚度4%
    机身长细比8.5
    机头长细比3
    翼型双圆弧翼型
    翼型最大厚度位置50%弦长
    下载: 导出CSV
  • [1] Cole J D, Cook L P. Transonic aerodynamics[M]. Amsterdam: Elsevier Science Publishers, 2012.
    [2] Chattot J, et al. Theoretical and applied aerodynamics[M]. New York: Springer Science+Business Media, 2015.
    [3] Gu Y Q, Fan T X, Mou J G, et al. Drag reduction technology of jet-a review[J]. International Journal of Engineering Research in Africa, 2015, 17(7): 30-42. http://cn.bing.com/academic/profile?id=2243434047&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Jameson A, Ou K. 50 years of transonic aircraft design[J]. Progress in Aerospace Sciences, 2011, 47(5): 308-318. doi: 10.1016/j.paerosci.2011.01.001
    [5] David A. Computational sensitivity analysis for the aerodynamic design of supersonic and hypersonic air vehicles[R]. ADA622380, 2015. http://cn.bing.com/academic/profile?id=2195423499&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Michael G. Computational analysis and characterization of RC-135 external aerodynamics[R]. ADA561659, 2012.
    [7] Forbes A, Patel A, Cone C, et al. Drag prediction for supersonic hydrogen-fueled airliners[R]. AIAA-2011-3968, 2011.
    [8] Palaniappan K, Jameson A. Bodies having minimum pressure drag in supersonic flow: Investigating nonlinear effects[J]. Journal of Aircraft, 2010, 47(4): 1451-1454. doi: 10.2514/1.C031000
    [9] Dehpanah P, Nejat A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43(6): 96-110. http://cn.bing.com/academic/profile?id=2037238279&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Lyu Z, Joaquim R, Martins R. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617. doi: 10.2514/1.C032491
    [11] Roysdon P, Khalid M. Lateral-directional stability investigation of a blended-wing-body[R]. AIAA-2010-9617, 2010.
    [12] Utsumi Y, Obayashi S. Design of supersonic biplane aircraft concerning sonic boom minimization[R]. AIAA-2010-4962, 2010. http://cn.bing.com/academic/profile?id=2171865953&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Ku Y C, Rho J H, et al. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave[J]. Structural and Multidisciplinary Optimization, 2010, 42(6): 965-976. doi: 10.1007/s00158-010-0550-6
    [14] Alyanak E. Modeling for conceptual design: an aeroelastic approach[R]. AIAA-2012-1425, 2012.
    [15] Christopher L O, Choi S. Design of optimum equivalent-area target for high-fidelity low-boom aircraft design[R]. AIAA-2015-2580, 2015.
    [16] Khalid A, Kumar P. Aerodynamic optimization of box wing-a case study[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2014, 1(4): 1-46. http://cn.bing.com/academic/profile?id=127845652&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Berger C, Carmona K, et al. Supersonic bi-directional flying wing configuration with low sonic boom and high aerodynamic efficiency[R]. AIAA-2011-3663, 2011. http://www.researchgate.net/publication/268004294_Supersonic_Bi-Directional_Flying_Wing_Configuration_with_Low_Sonic_Boom_and_High_Aerodynamic_Efficiency
    [18] Zha G, Im H, Espinal D. Toward zero sonic-boom and high efficiency supersonic flight, part i: a novel concept of supersonic bi-directional flying wing[R]. AIAA-2010-1013, 2010.
    [19] Wintzer M, Kroo I. Optimization and adjoint-based CFD for the conceptual design of low sonic boom aircraft[R]. AIAA-2012-963, 2012.
    [20] Waddington M, McDonald R. Development of an interactive wave drag capability for the open VSP parametric geometry tool[R]. AIAA-2015-2548, 2015.
    [21] Guan X H. Supersonic wing-body two-level wave drag optimization using extended far-field composite-element methodology[J]. AIAA Journal, 2014, 52(5): 981-990. doi: 10.2514/1.J052305
    [22] Feng X Q, Li Z K, et al. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics, 2014, 27(3): 531-541. doi: 10.1016/j.cja.2014.04.004
    [23] Berci M, Vigevano L. Sonic boom propagation with a non linear geometrical acoustic model[R]. AIAA-2011-2856, 2011.
    [24] Berci1 M, Igevano L. Sonic boom propagation revisited: a nonlinear geometrical acoustic model[J]. Aerospace Science and Technology, 2012, 23(1): 280-295. doi: 10.1016/j.ast.2011.08.003
    [25] Haas A, Kroo I. A multi-shock inverse design method for low-boom supersonic aircraft[R]. AIAA-2010-843, 2010.
    [26] Jung T, Starkey R, et al. Design methods to create frozen sonic booms via lobe balancing using aircraft components[R]. AIAA-2011-2857, 2011.
    [27] Damljanovic D, Vitic A, et al. Testing of AGARD-B calibration model in the T-38 transonic wind tunnel[J]. Scientific Technical Review, 2006, 56(2): 52-62.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  118
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-04-25
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日