留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某运输机加装失速条气动特性研究

刘毅 赵晓霞 欧阳绍修 袁志敏

刘毅, 赵晓霞, 欧阳绍修, 等. 某运输机加装失速条气动特性研究[J]. 实验流体力学, 2016, 30(5): 36-41. doi: 10.11729/syltlx20160012
引用本文: 刘毅, 赵晓霞, 欧阳绍修, 等. 某运输机加装失速条气动特性研究[J]. 实验流体力学, 2016, 30(5): 36-41. doi: 10.11729/syltlx20160012
Liu Yi, Zhao Xiaoxia, Ouyang Shaoxiu, et al. Research on aerodynamic characteristics of transport aircraft with stall strips[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 36-41. doi: 10.11729/syltlx20160012
Citation: Liu Yi, Zhao Xiaoxia, Ouyang Shaoxiu, et al. Research on aerodynamic characteristics of transport aircraft with stall strips[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 36-41. doi: 10.11729/syltlx20160012

某运输机加装失速条气动特性研究

doi: 10.11729/syltlx20160012
详细信息
    通讯作者:

    刘毅(1982-), 男, 四川资阳人, 硕士, 高级工程师。研究方向:飞机气动力设计。通信地址:陕西省汉中市五一路陕飞大厦(723000)。E-mail:evanliuyi@hotmail.com

  • 中图分类号: V211.7

Research on aerodynamic characteristics of transport aircraft with stall strips

  • 摘要: 为改善某运输机着陆襟翼构型失速急剧滚转问题,采用数值计算和风洞实验方法优选了机翼失速条的外形参数,并对气动力和流场特性进行了研究分析。以失速条高度H和安装位置距离前缘的长度S为设计变量,采用求解RANS方程的方法研究了失速条对着陆构型翼型二维特性的影响,表明S越小(即越靠近上翼面)失速迎角提前越多,H增大也能使失速迎角提前但敏感性小于S。失速条后方产生了分离气泡且随迎角增加而逐渐增大增长,在破裂后导致翼型失速提前,使升力线出现圆弧形的失速特征。设计了4种失速条在机翼上的平面布局方案,通过缩比模型风洞实验验证表明:40%半展长处展向长度2m,S=0的失速条使升力线由急剧失速变为平顶型失速并消除了失速后的不对称滚转力矩,将此失速条展长缩小一半的2种方案也不同程度地改善了失速形态,15%半展长处失速条对失速特性无明显改善,主要原因是气流分离从约40%半展长处开始发生,失速条安装在这一展向位置时才能发挥作用。
  • 图  1  失速条参数HS定义

    Figure  1.  Definition of stall strip parameters H and S

    图  2  带失速条翼型的二维网格

    Figure  2.  Two dimensional grids of the airfoil section with stall strip

    图  3  多段翼型升力特性计算值与实验值对比

    Figure  3.  The comparison between calculation and test of the lift of a multi-element airfoil

    图  4  失速条参数S对升力特性的影响

    Figure  4.  The impact of stall strip parameter S on the lift characteristics

    图  5  失速条参数H对升力特性的影响

    Figure  5.  The impact of stall strip parameter H on the lift characteristics

    图  6  失速条后方分离气泡的发展(H=30mm, S=0mm)

    Figure  6.  The development of the separation bubble after the stall strip(H=30mm, S=0mm)

    图  7  失速条风洞试验模型

    Figure  7.  Test model of the stall strip

    图  8  着陆构型机翼上翼面流场特性

    Figure  8.  Flow characteristics of the upper wing at landing configuration

    图  9  失速条平面布置方案

    Figure  9.  Planform arrangement plans of stall strips

    图  10  失速条参数S对飞机升力特性的影响(布局1)

    Figure  10.  The impact of stall strip parameter S on the lift characteristics of aircraft (arrangement 1)

    图  11  失速条参数S对飞机滚转力矩特性的影响(布局1)

    Figure  11.  The impact of stall strip parameter S on the roll moment of aircraft (arrangement 1)

    图  12  失速条参数S对飞机阻力特性的影响(布局1)

    Figure  12.  The impact of stall strip parameter S on the drag of aircraft (arrangement 1)

    图  13  失速条不同布局方案的升力特性

    Figure  13.  The lift characteristics of different stall strip arrangement plans

    图  14  失速条不同布局方案的滚转力矩特性

    Figure  14.  The roll moment of different stall strip arrangement plans

    图  15  失速条布局方案4的升力特性

    Figure  15.  The lift characteristics of stall strip arrangement plan 4

    图  16  失速条布局方案4的滚转力矩特性

    Figure  16.  The roll moment of stall strip arrangement plan 4

  • [1] 中国民用航空局. CCAR-25-R4运输类飞机适航标准[S]. 2011.
    [2] Torenbeek E. Synthesis of subsonic aircraft design[M]. Delft University Press, 1982:227-262.
    [3] Hoerner S F, Borst H V. Fluid-dynamic lift[M]. 2nd ed. Published by the auther, 1985.
    [4] McVeigb M A, Kisielowski E. A design summary of stall characteristics of straight wing aircraft[R]. NASA CR-1646, 1971:1-20.
    [5] Obert E. Aerodynamic design of transport aircraft[M]. IOS Press, 2009.
    [6] Feistel T W, Anderson S B, Kroeger R A. Alleviation of spin-entry tendencies through localization of wing-flow separation[J]. Journal of Aircraft, 1981, 18(2):69-75. doi: 10.2514/3.57467
    [7] Newsom W A, Satran D R, Johnson J L. Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane[R]. NASA-TP-2011, 1982.
    [8] Chambers J R, Dicarlo D J, Johnson J L, et al. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane[R]. NASA-TP-1589, 1979.
    [9] Jacobs E N. Characteristics of two sharp-nosed airfoils having reduced spinning tendencies[R]. NACA-TN-416, 1932.
    [10] Weick F E, Scudder N F. The effect on lift, drag, and spinning characteristics of sharp leading edges on airplane wings[R]. NACA-TN-447, 1933.
    [11] Owens D B, Capone F J, Hall R M, et al. Free-to-Roll analysis of abrupt wing stall on military aircraft at transonic speeds[R]. AIAA-2003-0750, 2003.
    [12] Capone F J, Hall R M, Owens D B, et al. Recommended experimental procedures for evaluation of abrupt wing stall characteristics[R]. AIAA-2003-0922, 2003.
    [13] Parikh P, Chung J. A computational study of the Abrupt Wing Stall (AWS) characteristics for various fighter jets:part I, F/A-18E and F-16C[R]. AIAA-2003-0746, 2003.
    [14] Hall R M. Accomplishments of the Abrupt Wing Stall (AWS) program and future research requirements[R]. AIAA-2003-0927, 2003.
    [15] Woodson S H, Green B E, Chung J J, et al. Understanding abrupt wing stall with CFD[R]. AIAA-2003-0592, 2003.
    [16] Liu Y, Zhao X X, Ouyang S X, et al. A method to predict the magnitude of roll during stall for transport aircraft and its application[C]. The 55th Israel Annual Conference on Aerospace Sciences, 2015.
    [17] ANSYS. ANSYS FLUENT theory guide[M]. ANSYS Inc, Canonsburg, PA, 2011.
  • 加载中
图(16)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  151
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-12
  • 修回日期:  2016-04-20
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日