留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型涡流发生器对超临界翼型减阻机理实验与数值分析

张进 刘景源 张彬乾

张进, 刘景源, 张彬乾. 微型涡流发生器对超临界翼型减阻机理实验与数值分析[J]. 实验流体力学, 2016, 30(4): 37-41. doi: 10.11729/syltlx20150157
引用本文: 张进, 刘景源, 张彬乾. 微型涡流发生器对超临界翼型减阻机理实验与数值分析[J]. 实验流体力学, 2016, 30(4): 37-41. doi: 10.11729/syltlx20150157
Zhang Jin, Liu Jingyuan, Zhang Binqian. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 37-41. doi: 10.11729/syltlx20150157
Citation: Zhang Jin, Liu Jingyuan, Zhang Binqian. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 37-41. doi: 10.11729/syltlx20150157

微型涡流发生器对超临界翼型减阻机理实验与数值分析

doi: 10.11729/syltlx20150157
详细信息
    通讯作者:

    张进(1976-),男,贵州德江人,讲师。研究方向:流动控制和飞行器气动布局设计。通信地址:江西省南昌市丰和南大道696号(330063)。Email:zhangjin_nchu@163.com

  • 中图分类号: V224+.5

Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators

  • 摘要: 针对安装在超临界翼型后部的微型涡流发生器减阻问题,先用风洞实验测出微型涡流发生器对超临界翼型升阻特性的影响,然后采用RANS方程和κ-ε湍流模型进行数值模拟,分析安装在超临界翼型后部的微型涡流发生器减阻原因。研究发现:微型涡流发生器使下游近壁面处低能气体向上卷起与外层高能气体掺混,近壁面平均湍动能增加、翼型后部脉动压强增大,压差阻力减小;湍流应力由速度梯度、湍流粘性系数和脉动压强共同决定,虽然气流掺混,弦向速度法向梯度减小、湍流粘性系数减小,但展向速度法向梯度和脉动压强增大,湍流应力增大,摩擦阻力增大;微型涡流发生器尺寸很小,完全浸没于附面层内,仅掺混与它高度相当的附面层内流体,对附面层厚度影响小,对翼型升力影响小。
  • 图  1  涡流发生器参数及安装示意图

    Figure  1.  Parameters of VG and the model installation

    图  2  超临界翼型及安装图

    Figure  2.  Supercritical airfoil and model installation in wind tunnel

    图  3  绕翼型网格及局部放大图

    Figure  3.  The grid around the airfoil(The inset shows enlarged images)

    图  4  干净翼型和安装涡流发生器的翼型实验与计算升力曲线比较

    Figure  4.  Comparison of lift coefficients of the airfoil between experiment and calculation with and without MVG

    图  5  未安装和安装MVG时,机翼压力分布

    Figure  5.  Pressure distribution with and without MVG

    图  6  迎角8°时,绕涡流发生器的流线

    Figure  6.  The streamlines around MVGs when α=8°

    图  7  干净翼型和安装MVG时,上下游研究点湍动能随高度变化

    Figure  7.  Dependence of the turbulence kinetic energy at the upstream and downstream location on the height with and without MVG

    图  8  干净翼型和安装MVG时,下游弦向和展向速度剖面

    Figure  8.  Dependence of the chord and span velocity at the downstream location on the height with and without MVG

    图  9  干净翼型和安装MVG时,上下游研究点湍流粘性系数随高度变化

    Figure  9.  Dependence of the turbulent viscosity at the upstream and downstream location on the height with and without MVG

    表  1  安装微型涡流发生器产生的阻力系数增量实验与计算结果比较(ΔCx_p为压差阻力增量,ΔCx_v为摩擦阻力增量)

    Table  1.   Comparation of drag coefficient increments caused by MVG between experiment and calculation

    α/(°)6810
    ΔCx_exp-0.0009-0.0025-0.0041
    ΔCx_calΔCx_p-3.278×10-4-7.688×10-4-6.965×10-4
    ΔCx_v3.996×10-58.155×10-56.001×10-5
    下载: 导出CSV
  • [1] Whitcomb, Richard T, Clark Larry R. An airfoil shape for efficient flight at supercritical Mach number[R]. NASA TM 1109, 1965.
    [2] 郝礼书, 高超, 张正科, 等. 超临界翼型跨音速特性实验研究[J]. 实验流体力学, 2013, 28(5): 601-606. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201305008.htm

    Hao L S, Gao C, Zhang Z K,et al. Experimental investigation of the supercritical airfoil transonic characteristics[J]. Journal of Experiments in Fluid Mechanics, 2013, 28(5): 601-606. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201305008.htm
    [3] 牟让科, 杨永年, 叶正寅. 超临界翼型的跨音速抖振特性[J]. 计算物理, 2001, 18(5): 477-480. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL200105019.htm

    Mu R K, Yang Y N, Ye Z Y. Airfoil at transonic flow[J]. Chinese Journal of Computational Physics, 2001, 18(5): 477-480. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL200105019.htm
    [4] Harris C D. NASA supercritical airfoil a matrix of family-related airfoil[R]. NASA TP 2969, 1990.
    [5] 李盈盈, 周洲, 甘文彪. 多鼓包技术在超临界翼型上的减阻特性研究[J]. 西北工业大学学报, 2013, 31(4): 517-520. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201304004.htm

    Li Y Y, Zhou Z, Gan W B. Drag reduction research on multi-bump technology for supercritical airfoil[J]. Journal of Northwestern Polytechnical University, 2013. 31(4): 517-520. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201304004.htm
    [6] 张攀峰, 陈迎春, 左林玄, 等. 超临界翼型Gurney襟翼增升技术实验研究[J]. 实验流体力学, 2010, 24(4): 17-20. http://syltlx.cars.org.cn/CN/article/searchArticle.do#

    Zhang P F, Chen Y C, Zuo L X,et al. Experimental study on lift enhancement of supercritical airfoil in subsonic by Gurney flap[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 17-20. http://syltlx.cars.org.cn/CN/article/searchArticle.do#
    [7] 何雨薇, 刘沛清, 段会申, 等. 超临界翼型吸气层流减阻控制数值研究[J]. 航空动力学报, 2010(11): 2443-2449. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011007.htm

    He Y W, Liu P Q, Duan H S, et al. Numerical investigation of the laminar and drag reduction control by using suction technology on a supercritical airfoil[J]. Journal of Aerospace Power, 2010. 25(11): 2443-2449. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011007.htm
    [8] Jukes T N, Segawa T, Furutani H. Flow control on a NACA 4418 Using Dielectric-barrier-discharge Vortex Generators[J]. AIAA Journal, 2013, 51(2): 452-464. doi: 10.2514/1.J051852
    [9] 倪亚琴. 涡流发生器研制及其对边界层的影响研究[J]. 空气动力学学报, 1995, 13(1): 110-116. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX501.017.htm

    Ni Y Q. Development of thevortex generator and study on the effect of vortex generator on boundary layer[J]. Acta Aerodynamica Sinica, 1995, 13(1): 110-116. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX501.017.htm
    [10] Bragg M B, Gregorek G M. Experimental study of aircraft performance with vortex generators[J]. Journal of Aircraft, 1987, 24(5): 305-309. doi: 10.2514/3.45445
    [11] Tai T C. Effect of micro-vortex generators on V-22 aircraft forward-flight aerodynamics[R]. AIAA-2002-0553, 2002.
    [12] John C Lin. Review of research on low-profile Vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38: 389-420. doi: 10.1016/S0376-0421(02)00010-6
    [13] 张进, 张彬乾, 阎文成, 等. 微型涡流发生器控制超临界翼型边界层分离实验研究[J]. 实验流体力学, 2005, 19(3): 58-60. http://syltlx.cars.org.cn/CN/article/searchArticle.do#

    Zhang J, Zhang B Q, Yan W C, et al. Investigation of boundary layer separation control for supercritical airfoil using micro vortex generator[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 58-60. http://syltlx.cars.org.cn/CN/article/searchArticle.do#
    [14] 张进. 涡流发生器控制超临界机翼附面层分离研究[D]. 西安: 西北工业大学, 2005: 42-46.

    Zhang J. Investigation ofboundary layer separation control for supercritical airfoil using vortex generator[D]. Xi'an: Northwestern Polytechnical University, 2005: 42-46.
    [15] 褚胡冰, 张彬乾, 陈迎春, 等. 微型涡流发生器控制增升装置流动分离研究[J]. 西北工业大学学报, 2011, 29(5): 799-805. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201105035.htm

    Chu H B, Zhang B Q, Chen Y C, et al. Controlling flow separation of high lift transport aircraft with micro vortex generators[J]. Journal of Northwestern Polytechnical University, 2011, 29(5): 799-805. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201105035.htm
    [16] 刘刚, 刘伟, 牟斌, 等. 涡流发生器数值计算方法研究[J]. 空气动力学学报, 2007, 25(2): 241-244. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200702018.htm

    Liu G, Liu W, Mou B, et al. CFD numerical simulation investigation of vortex generators[J]. Acta Aerodynamica Sinica, 2007, 25(2): 241-244. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200702018.htm
    [17] 焦予秦, 张彬乾, 金承信, 等. 翼型气动力直接测量风洞试验技术探索[J]. 实验流体力学, 2005, 19(2): 40-44. http://syltlx.cars.org.cn/CN/article/searchArticle.do#

    Jiao Y Q, Zhang B Q, Jin C X, et al. Experimental technique on direct measuring of aerodynamic forces of airfoil[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 40-44. http://syltlx.cars.org.cn/CN/article/searchArticle.do#
    [18] Tuncer Cebeci, Jean Cousteix. Modeling and computation of boundary-layer flows[M]. Berlin: Springer, 1998: 39-42.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  94
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-25
  • 修回日期:  2016-04-28
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日