留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发射光谱诊断电弧加热器漏水故障的试验研究

林鑫 陈连忠 董永晖 欧东斌 李飞 余西龙

林鑫, 陈连忠, 董永晖, 等. 发射光谱诊断电弧加热器漏水故障的试验研究[J]. 实验流体力学, 2016, 30(4): 14-19. doi: 10.11729/syltlx20150155
引用本文: 林鑫, 陈连忠, 董永晖, 等. 发射光谱诊断电弧加热器漏水故障的试验研究[J]. 实验流体力学, 2016, 30(4): 14-19. doi: 10.11729/syltlx20150155
Lin Xin, Chen Lianzhong, Dong Yonghui, et al. Experimental study on leak detection of cooling water in arc heater based on emission spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 14-19. doi: 10.11729/syltlx20150155
Citation: Lin Xin, Chen Lianzhong, Dong Yonghui, et al. Experimental study on leak detection of cooling water in arc heater based on emission spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 14-19. doi: 10.11729/syltlx20150155

发射光谱诊断电弧加热器漏水故障的试验研究

doi: 10.11729/syltlx20150155
基金项目: 

国家自然科学基金资助项目 11372329

详细信息
    作者简介:

    林鑫(1986-),男,山东青岛人,工程师。研究方向:高温气体流动光学测量技术。通信地址:北京市7201信箱15分箱(100074)。E-mail:linxin_bit@163.com

    通讯作者:

    欧东斌,E-mail:oudongbin@sina.com

  • 中图分类号: V556.4

Experimental study on leak detection of cooling water in arc heater based on emission spectroscopy

  • 摘要: 电弧加热器是飞行器热防护系统地面考核试验的首选设备。电弧加热器在运行时,由于其电极工作在高温环境,普遍采用高压水进行冷却,试验中存在着由于电极烧穿漏水导致加热器严重烧损的风险。由于高温气流的恶劣环境,目前尚无有效监测手段。本文作者建立一套以氢原子Hα(656.28nm)和氧原子(777.19nm)发射谱线作为目标谱线的发射光谱监测系统,通过分析电弧加热器故障条件和正常运行下高温流场中的发射光谱特性,诊断某高焓电弧加热器因烧蚀出现的电极漏水故障,并在考虑温度误差的前提下对该光谱测量系统测量灵敏度进行评估,获得了A、B两种试验状态下的漏水探测极限:A状态下约为1.85~0.94g/s;B状态下,2.12~0.98g/s。试验结果表明,发射光谱应用于电弧加热器漏水故障诊断是切实可行的。
  • 图  1  电弧风洞及发射光谱测量系统布置示意图

    Figure  1.  Schematic of the experimental set-up of the arc-heated wind tunnel and the emission spectroscopy measurement system

    图  2  发射光谱原始数据示意图

    Figure  2.  Corresponding raw test spectra under two conditions

    图  3  A状态下原子谱线相对强度随时间变化

    Figure  3.  Evolutions of atomic spectra relative intensities under test condition A

    图  4  B状态下原子谱线相对强度随时间变化

    Figure  4.  Evolutions of atomic spectra relative intensities under test condition B

    图  5  加热器电极烧损试验照片

    Figure  5.  Photograph of damaged arc heater electrodes

    图  6  发射光谱数据处理(B状态)

    Figure  6.  Atomic emission spectra and their curve fits under test condition B

    表  1  试验状态

    Table  1.   Test conditions

    Test conditionEnthalpy H0/(MJ·kg-1)Air flux G/(g·s-1)Total temperature T0/K
    A188467000
    B1610306500
    下载: 导出CSV

    表  2  H、O原子相关光谱常数

    Table  2.   Atomic spectrum constants used in this study

    Atomν/nmAki/μs-1gigkEi/cm-1Ek/cm-1
    H656.2853.88468225897492
    O777.1936.95157376886631
    下载: 导出CSV
  • [1] Grinstead J H, Porter B J, Carballo J E. Flow property measurement using laser-induced fluorescence in the NASA ames interaction heating facility[R]. AIAA-2011-1091, 2011.
    [2] plinter S C, Bey K S, Gragg J G, et al. Comparative measurements of earth and Martian entry environments in the NASA Langley HYMETS facility[R]. AIAA-2011-1014, 2011.
    [3] Park C, Raiche G A, Driver D M, et al. Comparison of enthalpy determination methods for an arc-jet facility[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4): 672-679. doi: 10.2514/1.15744
    [4] Kim S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. California: Stanford University, 2004.
    [5] Martin M N, Chang L S, Jeffries J B, et al. Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy[R]. AIAA-2013-2761, 2013.
    [6] Winter P M, Prabhu D K. Radiation transport analysis of emission spectroscopic measurements in the plenum region of the NASA IHF arc jet facility[R]. AIAA-2014-2489, 2014.
    [7] Takayanagi H, Mizuno M, Fujii K, et al. Arc heated wind tunnel flow diagnostics using laser-induced fluorescence of atomic species[R]. AIAA-2009-1449, 2009.
    [8] Inman J A, Bathel B F, Johansen C T, et al. Nitric oxide PLIF measurements in the Hypersonic Materials Environmental Test System (HYMETS)[R]. AIAA-2011-1090, 2011.
    [9] Vancrayenes B, Fletcher D G. Emission spectroscopic survey of graphite ablation in the VKI plasmatron[R]. AIAA-2006-2907, 2006.
    [10] Yalin A P, Laux C O, Kruger C H, et al. Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge[J]. Plasma Sources Science and Technology, 2002, 11: 248-253. doi: 10.1088/0963-0252/11/3/304
    [11] Lin X, Yu X L, Li F, et al. Measurements of nonequilibrium and equilibrium temperature behind a strong shock wave in simulated Martian atmosphere[J]. Acta Mechanica Sinica, 2012, 28(5): 1296-1302. doi: 10.1007/s10409-012-0104-9
    [12] Lin X, Yu X L, Li F, et al. CO concentration and temperature measurements in a shock tube for Martian mixtures by coupling OES and TDLAS[J]. Applied Physics B: Lasers and Optics, 2012, 110: 401-409. http://cn.bing.com/academic/profile?id=2061476840&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Dikalyuk A S, Surzhikov S T, Kozlov P V, et al. Nonequilibrium spectral radiation behind the shock waves in Martian and Earth atmospheres[R]. AIAA-2013-2505, 2013.
    [14] Winter M W, Prabhu D K, Williams W W. Determination of temperature profiles in the plenum region of the NASA IHF arc jet facility from emission spectroscopic measurements[R]. AIAA-2013-3016, 2013.
    [15] Winter M W, Prabhu D K, Taunk J S, et al. Emission spectroscopic measurements in the plenum region of the NASA IHF arc jet facility[R]. AIAA-2010-4522, 2010.
    [16] Winter M W, Prabhu D K, Raiche G A, et al. Emission spectroscopic measurements with an optical probe in the NASA Ames IHF arc jet facility[R]. AIAA-2012-1016, 2012.
    [17] 张志成. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 261-263.
    [18] Baum G M, Jorgensen L H. Charts for equilibrium flow properties of air in hypervelocity nozzles[R]. NASA TN D-1333, 1962.
    [19] Laux C O. Optical dignostics and radiative emission of air plasmas[D]. California: Stanford University, 1993.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  125
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-01-15
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日