留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于EMD的低湍流度信号处理分析方法

朱博 彭强 汤更生

朱博, 彭强, 汤更生. 一种基于EMD的低湍流度信号处理分析方法[J]. 实验流体力学, 2016, 30(5): 74-79. doi: 10.11729/syltlx20150148
引用本文: 朱博, 彭强, 汤更生. 一种基于EMD的低湍流度信号处理分析方法[J]. 实验流体力学, 2016, 30(5): 74-79. doi: 10.11729/syltlx20150148
Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. doi: 10.11729/syltlx20150148
Citation: Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. doi: 10.11729/syltlx20150148

一种基于EMD的低湍流度信号处理分析方法

doi: 10.11729/syltlx20150148
详细信息
    通讯作者:

    朱博(1973-), 男, 广西百色人, 高级工程师。研究方向:风洞测试、声学测试和热线技术研究。通信地址:四川省绵阳市二环路南段6号14信箱401分箱(621000)。E-mail:bobjou@139.com

  • 中图分类号: O357.5+4

Digital signal process of low turbulence intensity based on EMD

  • 摘要: 采用热线风速仪在3座典型低速风洞中进行了流场湍流度测量,这3座低速风洞包括1个低湍流风洞、1个常规闭口风洞和1个开口射流风洞。针对湍流信号通常受噪声干扰的问题,在湍流度值处理中引入了经验模式分解(EMD)自适应滤波和HHT时频谱分析方法。将EMD方法与其他几种湍流度值处理方法进行了比较,包括带通滤波方法(BP)、电磁噪声解耦方法(ENC)和高通惯性衰滤波方法(HPIA)。采用EMD方法测得低湍流风洞的湍流度值,在流场速度30~100 m/s的范围内小于0.05%。采用HHT方法完成了脉动速度信号的时频分析,分析发现开口风洞试验段的脉动速度HHT时频谱有突出的低频信号。所构建的EMD自适应滤波器可以有效控制噪声对热线输出信号的影响,是一种有效的低湍流度信号处理方法。
  • 图  1  低湍流风洞试验段脉动速度幅值谱比较

    Figure  1.  Comparition of flow velocity fluctuation amplitude spectrum in the low turbulence WT

    图  2  脉动速度时域数据比较

    Figure  2.  Comparision of flow velocity fluctuation time data

    图  3  开口风洞试验段湍流度不同信号处理结果的比较

    Figure  3.  Comparison of results obtained by different kinds of data processing methods in the open jet WT

    图  4  低湍流风洞试验段湍流度信号处理结果

    Figure  4.  Turbulence intensity results in the low turbulence WT

    图  5  常规低速风洞闭口试验段湍流度信号处理结果

    Figure  5.  Turbulence intensity results in the general low speed WT

    图  6  低湍流风洞试验段脉动速度0~200Hz信号HHT时频谱

    Figure  6.  HHT spectrum of 0~200Hz flow velocity fluctuation in the low turbulence WT

    图  7  常规低速风洞试验段脉动速度0~200Hz信号HHT时频谱

    Figure  7.  HHT spectrum of 0~200Hz flow velocity fluctuation in the general low speed WT

    图  8  开口风洞试验段脉动速度0~200Hz信号HHT时频谱

    Figure  8.  HHT spectrum of 0~200Hz flow velocity fluctuation in the open jet WT

    图  9  常规低速风洞试验段脉动速度200~1000Hz信号HHT时频谱

    Figure  9.  HHT spectrum of 200~1000Hz flow velocity fluctuation in the general low speed WT

    图  10  开口风洞试验段脉动速度200~1000Hz信号HHT时频谱

    Figure  10.  HHT spectrum of 200~1000Hz flow velocity fluctuation in the open jet WT

    表  1  3种低速风洞中的能量密度与其平均周期的乘积

    Table  1.   A list of Em×Tm in the 3 kinds of low speed wind tunnel

    风洞类型R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16
    低湍流0.440.050.100.040.220.210.030.011.0533.7937.2047.0527.8827.627.763.96
    常规低速0.340.210.030.170.070.010.530.200.501.9916.6025.6336.3811.3220.114.31
    开口风洞0.650.250.030.010.020.110.030.200.090.799.018.68451.3218.7513.5719.57
    下载: 导出CSV
  • [1] 何克敏, 白存儒, 郭渠渝, 等. 较低湍流度范围湍流度对风洞实验结果的影响[J]. 流体力学实验与测量, 1997, 11(3):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199703001.htm

    He K M, Bai C R, Guo Q Y, et al. The effect of turbulence on wind tunnel results in the range of low turbulence[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(3):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199703001.htm
    [2] 李峰, 白存儒, 周伟, 等. 湍流度对飞行器模型大迎角气动特性影响的初步研究[J]. 实验流体力学, 2006, 20(3):45-52. http://www.syltlx.com/CN/abstract/abstract9492.shtml

    Li F, Bai C R, Zhou W, et al. Primal research of the effect of flow turbulence on aerodynamic characteristics of a aircraft model at high angles of attack[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3):45-52. http://www.syltlx.com/CN/abstract/abstract9492.shtml
    [3] 米建春, 冯宝平. 平面射流沿轴线的特征尺度及其对测量信号过滤程度的依赖[J]. 物理学报, 2010, 59(7):4748-4755. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201007053.htm

    Mi J C, Feng B P. Centerline characteristic scales of a turbulent plane jet and their dependence on filtration of measured signals[J]. Acta Physica Sinica, 2010, 59(7):4748-4755. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201007053.htm
    [4] 侯志勇, 王连泽, 周建和, 等. 低(变)湍流度风洞设计再探讨[J]. 实验流体力学, 2011, 25(1):92-96. http://www.syltlx.com/CN/abstract/abstract10705.shtml

    Hou Z Y, Wang L Z, Zhou J H, et al. The further research on the design of low (varying) turbulence wind tunnel[J].Journal of Experiments in Fluid Mechanics, 2011, 25(1):92-96. http://www.syltlx.com/CN/abstract/abstract10705.shtml
    [5] Harald Q, Jürgen Q, Christian B. Hot-Wire measurements in cryogenic environment[R]. AIAA-2011-880.
    [6] Saric W S, Takagi S, Mousseux M. The ASU unsteady wind tunnel and fundamental requirements for freestream turbulence measurements[R]. AIAA-1988-0053, 1988.
    [7] Mueller T J, Scharpf D F, Batill S M, et al. The design of a subsonic low-noise, low-turbulence wind tunnel for acoustic measurements[R]. AIAA-1992-3883, 1992.
    [8] Neuhart Dan H, McGinley Catherine B. Free-stream turbulence intensity in the Langley 14-by 22-foot subsonic tunnel[R]. NASA/TP-2004-213247, 2004.
    [9] Premi Amandeep, Maughmer Mark D, Brophy Christopher. Flow-quality measurements and qualification of thePennsylvania State University low-Speed, low-Turbulence wind tunnel[R]. AIAA-2012-1214, 2012.
    [10] Stainback P Calvin, Owen F Kevin. Dynamic flow quality measurements in the Langley low turbulence pressure tunnel[R]. AIAA-1984-0621, 1984.
    [11] Kohama Y, Kobayashi R, Ito H. Tohoku university low-turbulence wind tunnel[R]. AIAA-1992-3913, 1992.
    [12] 李士心, 刘鲁源, 舒玮. 子波去噪技术在湍流信号处理中的应用[J]. 实验力学, 2001, 16(4):433-437. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200104012.htm

    Li S X, Liu L Y, Shu W. Turbulent signal processing based on wavelet transform de-noising technique[J]. Journal of Experimental Mechanics, 2001, 16(4):433-437. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200104012.htm
    [13] 朱博, 汤更生. 声学风洞流场低湍流度及频谱测量研究[J]. 实验流体力学, 2015, 29(4):58-64. http://www.syltlx.com/CN/abstract/abstract10860.shtml

    Zhu B, Tang G S. Low turbulence intensity and spectrum measurement research in aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):58-64. http://www.syltlx.com/CN/abstract/abstract10860.shtml
    [14] Huang N E, Shen Z, Long S R. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London SERIESA, 1998, 454:903-995. doi: 10.1098/rspa.1998.0193
    [15] 戴吾蛟, 丁晓利, 朱建军, 等. 基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J]. 测绘学报, 2006, 35(11):321-327. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200604004.htm

    Dai W J, Ding X L, Zhu J J, et al. EMD filter method and its application in GPS multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(11):321-327. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200604004.htm
    [16] 楼文娟, 卢旦, 杨毅, 等. 开孔建筑屋盖风振响应中的气动阻尼识别[J]. 空气动力学学报, 2007, 25(4):419-424. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200704002.htm

    Lou W J, Lu D, Yang Y, et al. Identification of aerodynamic damping for roof wind induced response of opening building[J]. Acta Aerodynamica Sinica, 2007, 25(4):419-424. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200704002.htm
    [17] Flandrin P, Rilling G. Empirical mode decomposition as filter bank[J]. IEEE Signal Process Letters, 2003, 11:112-114. https://www.researchgate.net/publication/3342944_Empirical_mode_decomposition_as_a_filter_bank?ev=pub_cit
    [18] 朱博, 王元兴, 余永生. 风洞模型-支撑系统涡激振动测量与分析[J]. 实验流体力学, 2014, 28(5):59-64. http://www.syltlx.com/CN/abstract/abstract10774.shtml

    Zhu B, Wang Y X, Yu Y S. Vortex-induced vibration measurement and analysis of model-sting system in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):59-64. http://www.syltlx.com/CN/abstract/abstract10774.shtml
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  123
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-08
  • 修回日期:  2016-02-27
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日