留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PIV技术的压力场重构算法实现与研究

刘顺 徐惊雷 俞凯凯

刘顺, 徐惊雷, 俞凯凯. 基于PIV技术的压力场重构算法实现与研究[J]. 实验流体力学, 2016, 30(4): 56-65. doi: 10.11729/syltlx20150119
引用本文: 刘顺, 徐惊雷, 俞凯凯. 基于PIV技术的压力场重构算法实现与研究[J]. 实验流体力学, 2016, 30(4): 56-65. doi: 10.11729/syltlx20150119
Liu Shun, Xu Jinglei, Yu Kaikai. Implementation and research on the reconstruction algorithms of pressure fields based on PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 56-65. doi: 10.11729/syltlx20150119
Citation: Liu Shun, Xu Jinglei, Yu Kaikai. Implementation and research on the reconstruction algorithms of pressure fields based on PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 56-65. doi: 10.11729/syltlx20150119

基于PIV技术的压力场重构算法实现与研究

doi: 10.11729/syltlx20150119
详细信息
    作者简介:

    刘顺(1994-),男,山东菏泽人,博士研究生。研究方向:发动机性能与内流气体动力学。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学明故宫校区A8楼404室(210016)。E-mail:liushun2011@126.com

    通讯作者:

    徐惊雷,E-mail:xujl@nuaa.edu.cn

  • 中图分类号: V211.71

Implementation and research on the reconstruction algorithms of pressure fields based on PIV

  • 摘要: 介绍了有限容积法、直接积分法和Poisson方程法3种基于PIV瞬时速度场重构压力场的基本原理以及相应的计算方法,选取管流突扩流场和偏置方块绕流流场两个不可压缩流场的瞬时速度场数据,采用上述3种压力场重构算法,分别研究了图像噪声、速度场精度、插值算法以及边界条件的类型与精度对重构压力场的影响。最后针对管流突扩过程第20ms的流场,给出了3种重构算法下的压力场云图以及对应的CFD模拟结果。研究表明,有限容积法和直接积分法容易受到噪声的影响而产生剧烈震荡,但是可以在较大的速度场误差范围内保持较高的精度,通过采用双线性插值可以获得更高精度的重构压力场;Poisson方程法不易受到噪声的影响而产生震荡,同时在高精度PIV速度场下的优势较为突出,通过采用双三次差值可以获得更高精度的重构压力场;混合边界条件仅仅测定边界上有限个点的压力值,就获得了接近狄利克雷边界条件下重构压力场的精度,远高于诺依曼边界条件;边界条件的误差严重降低重构压力场的精度,其影响程度比速度场误差还要大。
  • 图  1  PIV测量原理示意图[19-20]

    Figure  1.  Schematic diagram of PIV measurement[19-20]

    图  2  有限容积法同位网格系统[21]

    Figure  2.  Collocated grid system of finite volume method[21]

    图  3  中心差分格式示意图[23]

    Figure  3.  Schematic diagram of central difference scheme[23]

    图  4  直接积分法积分路径示意图[24]

    Figure  4.  The integration paths of direct integral method[24]

    图  5  管流突扩流场模型

    Figure  5.  The model of pipe flow with a sudden expansion

    图  6  管流突扩过程中的模拟PIV速度场

    Figure  6.  Simulated PIV velocity fields during the process of pipe flow

    图  7  偏置方块绕流流场模型

    Figure  7.  The model of the flow around a square

    图  8  偏置方块绕流模拟PIV速度场图像

    Figure  8.  Simulated PIV velocity field of the flow around a square

    图  9  距左侧测量边界40mm处截面的压力分布(无噪声)

    Figure  9.  Pressure distribution of the cross section at 40mm from the left side of the measurement area (no noise)

    图  10  距左侧测量边界40mm处截面的压力分布(有噪声或滤波)

    Figure  10.  Pressure distribution of the cross section at 40mm from the left side of the measurement area (with noise or filter)

    图  11  重构压力场误差与速度场误差的关系

    Figure  11.  Relationship between the error of reconstructed pressure fields and velocity fields

    图  12  重构压力场误差与插值算法的关系

    Figure  12.  Relationship between the error of reconstructed pressure fields and interpolation algorithms

    图  13  重构压力场误差与边界条件误差的关系

    Figure  13.  Relationship between the error of reconstructed pressure fields and boundary conditions

    图  14  管流突扩流场的压力场云图(20ms)

    Figure  14.  The pressure contours of the pipe flow (20ms)

    表  1  管流突扩流场在不同边界条件下的重构压力场误差

    Table  1.   The error of reconstructed pressure fields with different boundary conditions of the pipe flow

    重构算法管流突扩流场
    狄利克雷诺依曼混合
    有限容积法0.06540.23930.0954
    直接积分法0.06490.290.1418
    Poisson方程法0.03620.09280.0374
    下载: 导出CSV

    表  2  方块绕流流场在不同边界条件下的重构压力场误差

    Table  2.   The error of reconstructed pressure fields with different boundary conditions of the flow around a square

    重构算法偏置方块绕流流场
    狄利克雷诺依曼混合
    有限容积法0.18051.8010.4271
    直接积分法0.17941.78940.4862
    Poisson方程法0.02041.51760.0894
    下载: 导出CSV
  • [1] 李丹勋, 曲兆松, 王兴奎, 等. 粒子示踪测速技术原理与应用[M]. 北京: 科学出版社, 2012: 1-15.

    Li D X, Qu Z S, Wang X K. Principle and application of particle tracing technique[M]. Beijing: Science Press, 2012: 1-15.
    [2] Henning A, Kaepernick K, Ehrenfried K, et al. Investigation of aeroacoustic noise generation by simultaneous particle image velocimetry and microphone measurements[J]. Experiments in Fluids, 2008, 45(6): 1073-1085. doi: 10.1007/s00348-008-0528-y
    [3] Larsson J, Davidson L, Olsson M, et al. Aeroacoustic investigation of an open cavity at low Mach number[J]. AIAA Journal, 2004, 42(12): 2462-2473. doi: 10.2514/1.1339
    [4] 徐惊雷. PIV技术在超及高超声速流场测量中的研究进展[J]. 力学进展, 2012, (01): 81-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201008.htm

    Xu J L. The research progress of PIV in the measurement of ultra-and hypersonic flow fields[J]. Advances in Mechanics, 2012, (01): 81-90. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201008.htm
    [5] 王勇, 陈鹏, 耿子海, 等. 基于PIV速度场测量重构压强场的研究进展[J]. 实验流体力学, 2014, 04: 1-8, 24. http://www.syltlx.com/CN/abstract/abstract10745.shtml

    Wang Y, Chen P, Geng Z H, et al. Development of PIV based instantaneous pressure determination[J]. Journal of Experiments in Fluid Mechanics, 2014, 04: 1-8, 24. http://www.syltlx.com/CN/abstract/abstract10745.shtml
    [6] Gurka R, Liberzon A, Hefetz D, et al. Computation of pressure distribution using PIV velocity data[C]//Workshop on Particle Image Velocimetry, 1999. http://cn.bing.com/academic/profile?id=2120662661&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Hosokawa S, Moriyama S, Tomiyama A, et al. PIV measurement of pressure distributions about single bubbles[J]. Journal of Nuclear Science and Technology, 2003, 40(10): 754-762. doi: 10.1080/18811248.2003.9715416
    [8] Fujisawa N, Nakamura Y, Matsuura F, et al. Pressure field evaluation in microchannel junction flows through μPIV measurement[J]. Microfluidics and Nanofluidics, 2006, 2(5): 447-453. doi: 10.1007/s10404-006-0088-5
    [9] Fujisawa N, Tanahashi S, Srinivas K. Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement[J]. Measurement Science and Technology, 2005, 16(4): 989. doi: 10.1088/0957-0233/16/4/011
    [10] Van Oudheusden B W. Principles and application of velocimetry based planar pressure imaging in compressible flows with shocks[J]. Experiments in Fluids, 2008, 45(4): 657-674. doi: 10.1007/s00348-008-0546-9
    [11] Van Oudheusden B W, Scarano F, Roosenboom E W M, et al. Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible andcompressible flows[J]. Experiments in Fluids, 2007, 43(2-3): 153-162. doi: 10.1007/s00348-007-0261-y
    [12] Charonko J J, King C V, Smith B L, et al. Assessment of pressure field calculations from particle image velocimetry measurements [J]. Measurement Science and Technology, 2010, 21(10): 105401. doi: 10.1088/0957-0233/21/10/105401
    [13] De Kat R, Van Oudheusden B W, Scarano F. Instantaneous planar pressure field determination around a square-section cylinder based on time resolved stereo-PIV [C]//Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Posrtugal, 2008.
    [14] De Kat R, Van Oudheusden B W, Scarano F. Instantaneous planar pressure field determination around a square-section cylinder based on time resolved stereo-PIV [C]//Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Posrtugal, 2008.
    [15] De Kat R, Van Oudheusden B W. Instantaneous planar pressure determination from PIV in turbulent flow[J]. Experiments in Fluids, 2012, 52(5): 1089-1106. doi: 10.1007/s00348-011-1237-5
    [16] De Kat R, Van Oudheusden B W. Instantaneous planar pressure from PIV: analytic and experimental[3] test-cases[C]//Proceedings of the 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010. http://cn.bing.com/academic/profile?id=2004953817&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Adrian R J. Twenty years of particle image velocimetry[J]. Experiments in Fluids, 2005, 39(2): 159-169. doi: 10.1007/s00348-005-0991-7
    [18] Raff M, Willert C, Wereley S, et al. Particle image velocimetry: a practical guide[M]. 2nd ed. Berlin: Springer-Verlag, 2007.
    [19] 马静. 超燃冲压发动机内流通道冷态流场的PIV试验研究[D]. 南京: 南京航空航天大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10287-1011291906.htm

    Ma J. PIV experiment study of scramjet internal cold flow field[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2010. http://cdmd.cnki.com.cn/article/cdmd-10287-1011291906.htm
    [20] 林春峰. 超声速冲击射流的PIV实验研究[D]. 南京: 南京航空航天大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10287-2007194304.htm

    Lin C F. A PIV study of supersonic impinging jet[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2006. http://cdmd.cnki.com.cn/article/cdmd-10287-2007194304.htm
    [21] 王大伟, 王元. 由PIV的速度场获取压强分布的数值方法. 北京: 中国科技论文在线. http://www.paper.edu.cn/releasepaper/content/200611-227.

    Wang D W, Wang Y. A numerical method for obtaining the pressure distribution of the velocity field by PIV. Beijing: Science Paper Online. http://www.paper.edu.cn/releasepaper/content/200611-227.
    [22] Van Oudheusden B W. PIV-based pressure measurement[J]. Measurement Science and Technology, 2013, 24(3): 032001. doi: 10.1088/0957-0233/24/3/032001
    [23] 周正贵, 等. 计算流体力学基础理论与实际应用[M]. 南京: 东南大学出版社, 2008.

    Zhou Z G, et al. Basic theories and practical applications of computational fluid dynamics[M]. Nanjing: Southeast University Press, 2008
    [24] Baur T, Köngeter J. PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena[C]//3rd International Workshop on Particle Image Velocimetry, Santa Barbara, CA, USA, 1999. doi: 10.1007%2Fs00348-008-0546-9
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  138
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日