留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

编队飞行风洞实验研究

刘志勇 陶洋 史志伟 耿玺 尹协振

刘志勇, 陶洋, 史志伟, 等. 编队飞行风洞实验研究[J]. 实验流体力学, 2016, 30(4): 20-25. doi: 10.11729/syltlx20150099
引用本文: 刘志勇, 陶洋, 史志伟, 等. 编队飞行风洞实验研究[J]. 实验流体力学, 2016, 30(4): 20-25. doi: 10.11729/syltlx20150099
Liu Zhiyong, Tao Yang, Shi Zhiwei, et al. Investigation on formation flight in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 20-25. doi: 10.11729/syltlx20150099
Citation: Liu Zhiyong, Tao Yang, Shi Zhiwei, et al. Investigation on formation flight in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 20-25. doi: 10.11729/syltlx20150099

编队飞行风洞实验研究

doi: 10.11729/syltlx20150099
详细信息
    作者简介:

    刘志勇(1983-),男,湖北麻城人,工程师。研究方向:风洞试验技术。通信地址:四川省绵阳市中国空气动力研究与发展中心(621000)。E-mail:153469680@qq.com

    通讯作者:

    陶洋,E-mail:50323222@qq.com

  • 中图分类号: V211.7

Investigation on formation flight in wind tunnel

  • 摘要: 在1m非定常风洞中开展了两机编队飞行试验研究。前机采用尾支撑转接垂直叶型支杆与坐标架连接,可以实现相对位置(纵向、侧向和垂向间距)的精确改变;后机通过尾支撑连接到风洞的主支撑机构上,可以实现迎角的变化。采用内式六分量应变天平测量后机的气动力受前机尾涡流影响的变化情况,对后机的绕流场进行了PIV测量。试验中使用了2组模型,一组是简化的翼身组合体模型,另一组是翼身融合体飞翼布局模型。结果表明:当前机翼尖涡靠近后机翼面时,后机的升阻比变化较明显;当前机翼尖涡靠近后机翼尖时,后机可获得最大升阻比;前机迎角增大时,后机的升阻特性有较明显变化;当后机的迎角大于8°时,其升阻比基本不受前机影响。
  • 图  1  涡流冲浪示意图

    Figure  1.  Schematic of surfing aircraft vortices for energy

    图  2  1m非定常风洞简图

    Figure  2.  Schematic of 1m unsteady wind tunnel

    图  3  翼身组合体模型简图

    Figure  3.  Schematic of wing-body model

    图  4  飞翼模型简图

    Figure  4.  Schematic of flying wing model

    图  5  飞翼模型在试验段安装情况

    Figure  5.  Flying wing models mounted in test section

    图  6  典型测力实验结果

    Figure  6.  Typical force test results

    图  7  后机升阻比增量随z变化情况

    Figure  7.  Increments of the following aircraft′s lift-to-drag ratio as lateral spacing changes

    图  8  后机俯仰力矩系数增量随z变化情况

    Figure  8.  Increments of pitching moment of the following aircraft as lateral spacing changes

    图  9  后机滚转力矩系数增量随z变化情况

    Figure  9.  Increments of rolling moment of the following aircraft as lateral spacing changes

    图  10  后机升阻比随前机迎角变化情况

    Figure  10.  Lift-to-drag ratio variation of the following aircraft as the leading aircraft′s angle of attack changes

    图  11  单机PIV结果

    Figure  11.  PIV results of isolated aircraft

    图  12  前机位置z=-1/8b1时的PIV结果

    Figure  12.  PIV results with the leading aircraft placed at z=-1/8b1

    表  1  Φ20天平参数

    Table  1.   Parameters of Φ20 balance

    X/NY/NZ/NMx/(N·m)My/(N·m)Mz/(N·m)
    设计载荷802501256815
    标准不确定度/%FS0.10.10.10.140.190.1
    下载: 导出CSV
  • [1] Ginevsky A S, Zhelannikov A I. Vortex wakes of aircrafts[M]. Springer-Verlag Berlin Heidelberg, 2009.
    [2] Frech M, Zinner T. Wake vortex behavior classes and their initial validation[J]. Journal of Aircraft, 2004, 41(3): 564-570. doi: 10.2514/1.55
    [3] 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报, 2014, 35(9): 2375-2389. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201409001.htm

    Lu Y P, Yang C X, Liu Y Y. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2375-2389. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201409001.htm
    [4] Mao W X. Effect of mass variation on the dynamics of receiver aircraft during aerial refueling[D]. Davis: University of California, 2008.
    [5] Ro K, Kamman J W. Modeling and simulation of hose PARA drogue aerial refueling systems[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 53-63. doi: 10.2514/1.45482
    [6] Waishek J. Derivation of the dynamics equations for receiver aircraft in aerial refueling[D]. Arlington: University of Texas, 2007.
    [7] Liu Hang, Xu Ming, Chen Nanyu, et al. Task effectiveness evaluation on anti-ship attack of fighter aircraft[J]. Transactions of Nanjing University of Aeronautics&Astronautics, 2012, 29(2): 164-170. https://www.researchgate.net/publication/292217922_Task_effectiveness_evaluation_on_anti-ship_attack_of_fighter_aircraft
    [8] Guseinov A B. The effectiveness of cruise missile[M]. Moscow: Moscow Aviation Institute Press, 2003.
    [9] Weimer Skirch, Henri, Julien Martin, et al. Energy saving in flight formation[J]. Nature, 2001, 413(18): 697-698. http://cn.bing.com/academic/profile?id=1658402581&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Wang Z, Mook D T. Numerical aerodynamic analysis of formation flight[R]. AIAA-2003-610, 2003.
    [11] Adlene B, Julien B, Jean C J. Patched grid and adaptive mesh refinement strategies for wake vortex transport calculation[R]. AIAA-2001-2416, 2001.
    [12] Bangash Z A, Sanchez R P, Ahmed A. Aerodynamics of formation flight[R]. AIAA-2004-725, 2004.
    [13] William B B, David R G. Comparison of predicted and measured formation flight interference effects[J]. Journal of Aircraft, 2004, 41(2): 201-207. doi: 10.2514/1.9278
    [14] Michael T M. A study in drag reduction of close formation flight accounting for flight control trim positions and dissimilar formations[D]. Alabama: Department of the Air Force, Air University, 2005.
    [15] 何德富. 飞机翼尖尾涡对后面飞机飞行安全影响及安全措施[J]. 中国民航飞行学院学报, 2005, 16(1): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-MHFX200501003.htm

    He D F. Safety effect and precautions for flowing aircraft by leading aircraft wake vortices[J]. Journal of Civil Aviation Flight University of China. 2005, 16(1): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-MHFX200501003.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  131
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-06
  • 修回日期:  2016-03-17
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日