留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年  第37卷  第1期

目录
2023 年 1 期目录
2023, 37(1): 1-2.
摘要(305) HTML (139) PDF(65)
摘要:
高速磁浮列车空气动力学专刊
“高速磁浮列车空气动力学”专刊简介
丁叁叁, 倪章松, 高广军, 邓自刚, 陈大伟
2023, 37(1): 1-2.
摘要(254) HTML (172) PDF(48)
摘要:
600 km/h高速磁浮交通系统气动设计
丁叁叁, 刘加利, 陈大伟
2023, 37(1): 1-8. doi: 10.11729/syltlx20220131
摘要(4939) HTML (332) PDF(93)
摘要:
中国轨道交通历经几代技术创新与发展,取得了令世界瞩目的成就。轮轨系统的黏着限制了轨道交通的进一步高速化,磁浮技术在轨道交通上的应用应运而生。“十三五”期间,中国开始研制600 km/h高速磁浮交通系统。高速磁浮列车运行速度为600 km/h,马赫数达到0.49,列车空气动力学性能急剧恶化,加之运行环境(车–轨间隙、两侧节流)的变化,呈现出与高速轮轨列车不同的气动特征,空气动力学问题成为高速磁浮列车设计研发的关键问题之一。本文探讨了600 km/h高速磁浮列车气动设计面临的技术挑战,提出了高速磁浮列车气动设计解决方案,介绍了我国600 km/h高速磁浮列车气动设计方案,展望了高速磁浮列车空气动力学未来研究方向。
真空管道磁浮交通车体热压载荷分布特征及其非定常特性
胡啸, 马天昊, 王潇飞, 邓自刚, 张继旺, 张卫华
2023, 37(1): 9-28. doi: 10.11729/syltlx20220084
摘要(3609) HTML (278) PDF(56)
摘要:
基于SST $k-\omega$湍流模型和IDDES方法,采用三维数值模型对800 km/h的真空管道磁浮交通系统在雍塞状态(阻塞比为0.3和0.2)和非雍塞状态(阻塞比为0.1)下进行瞬态模拟,得到列车车体热压载荷时均分布特征及其波动特性,并利用跨声速风洞凸块试验数据验证了数值方法的准确性。基于本征正交分解提取流场重要相干结构,识别列车表面载荷非定常较强区域,揭示其时空演化规律。研究结果表明:列车上表面载荷分布特征与拉瓦尔喷管相似,雍塞/非雍塞状态下载荷分布差异主要位于扩张段;列车下表面载荷分布因悬浮架腔体的截面突变而变得复杂,气流突入到第一个悬浮架腔体形成局部滞止点,造成车体压力大幅度振荡,同时热量在列车底部聚集,尾车下洗气流和上洗气流相互作用差异导致了雍塞/非雍塞状态下温度峰值的位置不同;列车表面压力非定常较强区域主要位于底部悬浮架处,且存在14 Hz的特征频率,雍塞状态下尾车激波处也是一个非定常源;中间车、尾车温度载荷一阶模态体现了热量累积过程。
高速列车车顶–升力翼组合体气动特性
高建勇, 张军, 倪章松, 周鹏, 朱彦, 王成强, 高广军
2023, 37(1): 29-35. doi: 10.11729/syltlx20220053
摘要(3258) HTML (177) PDF(59)
摘要:
高速列车升力翼通过气动增升实现车体等效减重,为高速列车节能降耗提供了新思路。升力翼气动性能直接影响等效减重效果,研究车顶–升力翼组合体在不同工况下的气动特性对列车升力翼设计具有重要意义。采用计算流体力学方法和kε模型进行数值仿真研究,分析了车–翼连接杆对升力翼气动特性的影响,研究了升力翼飞高、来流速度、迎角等设计参数对升力翼气动特性的影响规律。研究结果表明:采用NACA0012翼型剖面的车–翼连接杆对升力翼升力和阻力的影响不超过3.7%;在车顶模型前缘引起的高速气流影响下,随着升力翼飞高增大,冲击升力翼的气流速度减小,升力有减小的趋势,在3倍弦长飞高范围内,不同飞高升力翼的升力差值最大不超过3%;当来流速度增大至90 m/s以上时,升力翼的升力系数和阻力系数分别稳定在1.62和0.61附近;在0°~22°迎角范围内,升力翼升力系数不断增大,迎角大于22°后,升力翼升力系数减小。
高速铁路隧道内压缩波模拟实验装置初步研究
杨文喆, 刘峰, 卫梦杰, 姚拴宝, 陈大伟
2023, 37(1): 36-43. doi: 10.11729/syltlx20220096
摘要(3246) HTML (173) PDF(49)
摘要:
高速列车驶入隧道时会产生初始压缩波,其沿隧道纵向传播至出口时会向隧道外辐射形成微气压波。本文搭建了利用高压空气瞬间释放产生初始压缩波的实验装置,对其产生的压缩波开展了实验研究。介绍了实验装置的组成,分析了隧道内压力时程曲线及形成机理,给出了实验装置各参数对初始压缩波的影响规律,对压缩波的后续衰减过程进行了分析。实验结果表明:隧道内的压力波动主要受隧道出入口的反射波影响;通过改变实验装置相关参数能够对初始压缩波的波形进行调节;不同高压腔初始压力下,压缩波的衰减周期相同,但初始幅值越大,相同时间内压力衰减得越快。
基于舒适性的高速磁浮铁路单线隧道最不利隧道长度分布特征研究
杜迎春, 梅元贵
2023, 37(1): 44-52. doi: 10.11729/syltlx20220120
摘要(3067) HTML (120) PDF(35)
摘要:
列车在不同长度隧道中高速行驶,会产生不同程度的压力波动,从而引起乘客不同程度的耳感舒适性问题。采用一维可压缩非定常不等熵流动模型的特征线法和时间常数法动态气密指数模型,研究了单列高速磁浮列车通过隧道时的车外压力波和两种动态气密指数下的车内压力变化特征,完善了基于压力舒适性标准的高速磁浮铁路单线最不利隧道长度的概念,进行了列车速度和列车动态气密指数对最不利隧道长度影响规律的研究。研究发现:在基于车外压力最大负压值的最不利隧道长度下,车内压力最大负压值较小。车内每1、3、10和60 s内最大压力变化量最大值随隧道长度增大呈先增大后减小的特征,即存在舒适性约束条件下的最不利隧道长度。列车速度不同,该最不利隧道长度不同。除车内每10 s压力限值条件下外,动态气密指数不同,最不利隧道长度近似。动态气密指数83 s、速度600 km/h的单列磁浮列车通过截面积为100 m2的隧道时,满足UIC660舒适性标准的最不利隧道长度为10~12 km。本文成果对研究基于舒适性标准的隧道净空面积和列车气密性,以及进一步完善基于隧道压力波效应的轨道交通最不利隧道长度理论体系有较好的参考价值。
高速磁浮列车过隧道诱导的隧道出口列车风研究
成炯豪, 郭易, 郭迪龙, 纪占玲, 毛军, 刘雯
2023, 37(1): 53-63. doi: 10.11729/syltlx20220110
摘要(2976) HTML (129) PDF(34)
摘要:
高速磁浮列车进入隧道时,产生的压缩波会在隧道出口诱导气流形成伴随速度。以高速磁浮列车为研究对象,采用三维、可压缩、非定常的计算方法对不同列车运行速度和隧道阻塞比下列车通过隧道的过程进行了计算,分析了隧道出口附近压缩波诱导的列车风特性,给出了列车运行速度和隧道阻塞比对列车风速度的影响规律。结果表明:隧道出口内,压缩波诱导形成的列车风速度变化趋势与峰值在纵向(列车运行方向)上基本保持不变;隧道出口外,列车风峰值速度在纵向25 m范围内逐渐降低,在横向(垂直于列车运行方向)5 m范围内基本保持不变;随着列车运行速度和隧道阻塞比增大,隧道出口内外的列车风峰值速度均明显增大,列车运行速度600 km/h、隧道阻塞比17.04%时,隧道出口外轨道中心线上纵向5 m处列车风峰值速度高达56 m/s。本文结论可为铁路隧道列车风防护及高速磁浮列车安全运行提供参考。
真空管道列车动态运行气动特性研究
宋嘉源, 李田, 张继业
2023, 37(1): 64-71. doi: 10.11729/syltlx20220121
摘要(3177) HTML (149) PDF(39)
摘要:
研究真空管道列车瞬态气动特性能为建设多态耦合真空管道列车实验平台提供参考。建立了三维真空管道列车模型,采用剪切应力运输(Shear Stress Transport, SST) kω湍流模型求解流场,通过对比不同时刻列车匀速和加速时的气动阻力、压力分布及流场特性,揭示了加速度对真空管道列车气动阻力的影响机制。研究结果表明:头车和尾车气动阻力主要受管道壅塞和尾部激波脱离的影响,在非壅塞状态下,尾车阻力增长缓慢而头车阻力基本不变。相比于加速工况,匀速工况启动速度较大,斜激波反射造成列车表面压力波动,波动幅值随时间逐渐降低。加速时头车压缩前方空气过程较缓慢,前驱激波强度较低,头车气动阻力和周围压力的变化滞后于列车运行速度的变化,且加速度越小滞后效果越明显。在匀速运行阶段,壅塞段和尾部激波段长度与运行时间成正比。
大气环境变化对真空管道温度场影响的研究
高超, 严日华, 武斌, 周廷波
2023, 37(1): 72-81. doi: 10.11729/syltlx20220116
摘要(3186) HTML (145) PDF(40)
摘要:
真空管道内的温度分布直接影响管道内磁浮列车的气动性能及运行安全,研究大气环境对真空管道温度场的影响,对未来真空管道列车运输系统的建设具有重要意义。基于四川省成都市近5年(2017—2021)的气象数据,总结了各季节的太阳辐射强度、空气湿度、大气温度和风速等大气环境参数,建立了真空管道辐射传热数值计算方法,采用DO(Discrete Ordinate)辐射模型研究了太阳辐射对真空管道内气流温度的影响,得到了不同季节、不同真空度下管道内气流温度分布及变化规律。研究表明:在太阳辐射的影响下,真空管道内气流温度提升较大;在相同真空度下,管道内气流温度夏季最高、冬季最低;随着真空度逐渐降低,管道内气流温度逐渐升高,真空度为0.1 atm(约10.1 kPa)时,夏季管道内气流温度最大提升56.60 K。
600 km/h磁浮列车隧道交会车体压力载荷特征研究
魏康, 来积伟, 梅元贵
2023, 37(1): 82-90. doi: 10.11729/syltlx20220117
摘要(3448) HTML (146) PDF(41)
摘要:
随着列车速度的提升,空气动力学效应对车体压力载荷影响愈加严重,且列车隧道交会比单列车通过隧道时的空气动力学效应更加剧烈。为研究磁浮列车隧道交会时的车体压力载荷,采用一维可压缩非定常不等熵流动模型,在论证了研究方法正确性的基础上,分析了车体最大正负压值特征和车体压力最值(最大正负压值和最大压力峰峰值)分布特性,研究了隧道长度、列车速度和阻塞比对车体压力载荷的影响特性。研究结果表明:列车在通过隧道的过程中,车体所承受的最大负压值远大于最大正压值;只有当隧道长度超过一定值时,车体的最大正负压值出现在头尾车;头尾车的压力最值在隧道长度超过2 km以后保持定值,且不同速度下头尾车的最大正压值的定值基本重合,接近于“零”;隧道长度在一定范围内时,车体压力载荷与速度的二次方成正比;车体压力最值随阻塞比增大而增大。研究成果可为车体气动疲劳强度设计提供基础数据。
导流装置对高速磁浮列车气动特性的影响
李一凡, 李田, 张继业, 张卫华
2023, 37(1): 91-99. doi: 10.11729/syltlx20220109
摘要(3873) HTML (84) PDF(36)
摘要:
由于车轨悬浮间隙的存在,高速磁浮列车的悬浮架周围流场紊乱且气动力复杂,影响列车的悬浮和导向性能。基于计算流体力学建立了3车编组的高速磁浮列车气动数值仿真模型,研究了列车气动特性及车轨间隙和悬浮架周围的流场结构,分析了3种不同形式的导流装置(板式、短楔形、长楔形)对列车气动特性的影响规律。研究结果表明:在500 km/h的运行速度下,气流通过头车鼻尖底部悬浮间隙直接冲击在头车一位端悬浮架迎风侧,形成的压差阻力使头车气动阻力大幅增大;受悬浮架扰流影响,气流在车体底部形成了大面积的正压区,直接导致头车气动升力和气动力矩大幅提高且远高于中间车及尾车气动升力。根据研究结果,改变头车鼻尖底面结构,控制进入车轨磁浮间隙的气流流量和方向,改善了列车表面压力分布情况,协同降低了列车气动阻力、气动升力和点头力矩。与原型磁浮列车相比,3种导流装置均能实现减阻降升,其中气动特性优化效果最好的长楔形导流装置可实现减小整车气动阻力3.6%、头车气动升力40.6%和头车点头力矩80.3%,综合气动性能最好。
高速磁浮隧道扩大等截面斜切型缓冲结构减缓初始压缩波机理研究
马智豪, 景雪蕾, 杜迎春, 梅元贵
2023, 37(1): 100-112. doi: 10.11729/syltlx20220123
摘要(5660) HTML (147) PDF(32)
摘要:
高速轨道车辆驶入隧道,在车前产生初始压缩波,以声速传播至隧道出口处并向外辐射产生微气压波,对环境造成严重危害。采用三维非定常可压缩流动N–S方程和SST kω湍流模型,以国内某型600 km/h的磁浮列车为研究对象,通过模拟磁浮列车驶入扩大等截面无斜切缓冲结构、扩大等截面斜切型缓冲结构和无缓冲结构隧道产生的初始压缩波情况,分析缓冲结构斜切端及斜切角度对初始压缩波的减缓作用及机理。结果表明:初始压缩波最大压力梯度的形成与车头最大横截面积变化率部位进入隧道/缓冲结构入口直接相关,同时与隧道内流量变化率最大值相对应;设置扩大等截面无斜切缓冲结构可较大幅度降低压缩波最大梯度,降低率为49.92%;将扩大等截面缓冲结构的垂直端改为正斜切端可进一步提高降低率,当斜切角分别为10°、20°、30°和39°时,降低率增幅分别为12.93%、10.32%、8.18%和6.28%;扩大等截面斜切型缓冲结构斜切角为10°时对初始压缩波的压力梯度峰值降低作用最明显,总降低率为62.85%。本文采用头型横截面积变化率、空气流量和观测点压缩波三方面耦合分析方法,探究影响初始压缩波最大压力梯度的头型、空气流量之间的相互映射关系,合理解释了缓冲结构减缓初始压缩波机理,可为今后进一步优化列车头型和不同型式缓冲结构设计及其气动效应分析提供了参考。

重要公告

www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

请广大读者、作者相互转告,广为宣传!

感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


《实验流体力学》编辑部

2021年8月13日