留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速磁浮列车过隧道诱导的隧道出口列车风研究

成炯豪 郭易 郭迪龙 纪占玲 毛军 刘雯

成炯豪, 郭易, 郭迪龙, 等. 高速磁浮列车过隧道诱导的隧道出口列车风研究[J]. 实验流体力学, 2023, 37(1): 53-63 doi: 10.11729/syltlx20220110
引用本文: 成炯豪, 郭易, 郭迪龙, 等. 高速磁浮列车过隧道诱导的隧道出口列车风研究[J]. 实验流体力学, 2023, 37(1): 53-63 doi: 10.11729/syltlx20220110
CHENG J H, GUO Y, GUO D L, et al. Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 53-63 doi: 10.11729/syltlx20220110
Citation: CHENG J H, GUO Y, GUO D L, et al. Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 53-63 doi: 10.11729/syltlx20220110

高速磁浮列车过隧道诱导的隧道出口列车风研究

doi: 10.11729/syltlx20220110
基金项目: 国家自然科学基金(52172336)
详细信息
    作者简介:

    成炯豪:(1995—),男,山西晋城人,博士研究生。研究方向:高速列车空气动力学,高速列车多体动力学。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所流固耦合系统力学重点实验室(100190)。E-mail:chengjionghao@imech.ac.cn

    通讯作者:

    E-mail:guoyi0536@163.com

  • 中图分类号: O355;U237

Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel

  • 摘要: 高速磁浮列车进入隧道时,产生的压缩波会在隧道出口诱导气流形成伴随速度。以高速磁浮列车为研究对象,采用三维、可压缩、非定常的计算方法对不同列车运行速度和隧道阻塞比下列车通过隧道的过程进行了计算,分析了隧道出口附近压缩波诱导的列车风特性,给出了列车运行速度和隧道阻塞比对列车风速度的影响规律。结果表明:隧道出口内,压缩波诱导形成的列车风速度变化趋势与峰值在纵向(列车运行方向)上基本保持不变;隧道出口外,列车风峰值速度在纵向25 m范围内逐渐降低,在横向(垂直于列车运行方向)5 m范围内基本保持不变;随着列车运行速度和隧道阻塞比增大,隧道出口内外的列车风峰值速度均明显增大,列车运行速度600 km/h、隧道阻塞比17.04%时,隧道出口外轨道中心线上纵向5 m处列车风峰值速度高达56 m/s。本文结论可为铁路隧道列车风防护及高速磁浮列车安全运行提供参考。
  • 图  1  磁浮列车模型

    Figure  1.  Maglev train model

    图  2  隧道和计算域参数示意图

    Figure  2.  Schematic diagrams of the tunnel and the computational domain

    图  3  计算域网格

    Figure  3.  Computational gird

    图  4  热线风速仪安装位置

    Figure  4.  Installation position of the hot wire anemometer

    图  5  隧道出口列车风速度

    Figure  5.  Wind speed at the tunnel exit

    图  6  不同列车运行速度下的动模型实验和数值模拟测点风速对比

    Figure  6.  Comparison of wind speed at the measuring point between moving model test and numerical simulation

    图  7  不同网格尺寸下的隧道出口风速

    Figure  7.  Comparison of wind speed under different grid resolution conditions

    图  8  隧道内马赫波传播图及隧道出口测点风速

    Figure  8.  Mach wave propagation in the tunnel and wind speed of the measuring point at the tunnel exit

    图  9  测点分布

    Figure  9.  Distribution of the measurement points

    图  10  测点1~5风速

    Figure  10.  Wind speed of the Measuring point 1–5

    图  11  轨道中心线上测点风速

    Figure  11.  Wind speed at the measuring points of track center line

    图  12  不同y坐标下的列车风速度对比

    Figure  12.  Comparison of wind speed at different y

    图  13  不同时刻隧道出口的速度云图

    Figure  13.  Velocity contours at different times near the tunnel exit

    图  14  隧道出口内测点风速

    Figure  14.  Wind speed at the measurement points in the tunnel

    图  15  隧道出口外测点列车风峰值速度

    Figure  15.  Maximum wind speed at the measurement points outside the tunnel

    图  16  隧道出口内测点风速

    Figure  16.  Wind speed at the measurement points in the tunnel

    图  17  隧道出口外测点列车风峰值速度

    Figure  17.  Maximum wind speed at the measurement points outside the tunnel

  • [1] 任魁山, 李奎, 蒋尧, 等. 中速磁浮列车双线隧道初始压缩波特征的数值模拟研究[J]. 机车电传动, 2020(6): 51–55. doi: 10.13890/j.issn.1000-128x.2020.06.011

    REN K S, LI K, JIANG Y, et al. Numerical simulation of initial compression wave characteristics in double track tunnel of medium speed maglev train[J]. Electric Drive for Locomotives, 2020(6): 51–55. doi: 10.13890/j.issn.1000-128x.2020.06.011
    [2] BELL J R, BURTON D, THOMPSON M C, et al. A wind-tunnel methodology for assessing the slipstream of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 1–19. doi: 10.1016/j.jweia.2017.03.012
    [3] POPE C W. Effective management of risk from slipstream effects at trackside and platforms[R]. Rail Safety and Standards Board-T425 Report, 2007.
    [4] STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177–193. doi: 10.1243/09544097JRRT133
    [5] FLYNN D, HEMIDA H, BAKER C, et al. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14–28. doi: 10.1016/j.jweia.2016.07.001
    [6] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [7] 林一平. 我国磁浮列车研制取得重大进展[J]. 交通与运输, 2017, 33(3): 50–53. doi: 10.3969/j.issn.1671-3400.2017.03.020
    [8] 董婷婷. 高速列车隧道气动性能分析[D]. 成都: 西南交通大学, 2013.

    DONG T T. Study on aerodynamic performance of high-speed trains in the tunnel[D]. Chengdu: Southwest Jiaotong University, 2013. doi: 10.7666/d.Y2575369
    [9] 李炎, 高孟理, 周鸣镝, 等. 铁路隧道列车活塞风的理论研究与计算方法的探讨[J]. 铁道学报, 2010, 32(6): 140–145. doi: 10.3969/j.issn.1001-8360.2010.06.023

    LI Y, GAO M L, ZHOU M D, et al. Theoretical study and calculation method of train piston wind in railway tunnels[J]. Journal of the China Railway Society, 2010, 32(6): 140–145. doi: 10.3969/j.issn.1001-8360.2010.06.023
    [10] HOWE M S. Review of the theory of the compression wave generated when a high-speed train enters a tunnel[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 1999, 213(2): 89–104. doi: 10.1243/0954409991531056
    [11] 顾红生, 赵毅山. 磁悬浮列车在隧道内影响活塞风速的因素[J]. 同济大学学报: 自然科学版, 2003, 31(3): 324–328. doi: 10.3321/j.issn:0253-374X.2003.03.016

    GU H S, ZHAO Y S. Effects on piston wind velocity of maglev in tunnel[J]. Journal of Tongji University: Natural Science, 2003, 31(3): 324–328. doi: 10.3321/j.issn:0253-374X.2003.03.016
    [12] 余南阳. 高速铁路隧道压力波数值模拟和模型试验研究[D]. 成都: 西南交通大学, 2004.

    YU N Y. A study on numerical simulation and model experiment of the pressure waves of the high-speed trains through tunnels[D]. Chengdu: Southwest Jiaotong Univer-sity, 2004.
    [13] SAKUMA Y, SUZUKI M, IDO A, et al. Measurement of air velocity and pressure distributions around high-speed trains on board and on the ground (boundary problem, technical session)[J]. The Proceedings of International Symposium on Seed-Up and Service Technology for Railway and Maglev Systems:STECH, 2009, 2009: 360769–1. doi: 10.1299/jsmestech.2009._360769-1_
    [14] 刘峰, 姚松, 刘堂红, 等. 高速铁路隧道壁面气动压力实车试验分析[J]. 浙江大学学报: 工学版, 2016, 50(10): 2018–2024. doi: 10.3785/j.issn.1008-973X.2016.10.024

    LIU F, YAO S, LIU T H, et al. Analysis on aerodynamic pressure of tunnel wall of high-speed railways by full-scale train test[J]. Journal of Zhejiang University: Engineering Science, 2016, 50(10): 2018–2024. doi: 10.3785/j.issn.1008-973X.2016.10.024
    [15] 方雨菲, 马伟斌, 程爱君, 等. 隧道附属设施气动效应分析[J]. 铁道建筑, 2022, 62(4): 102–106. doi: 10.3969/j.issn.1003‐1995.2022.04.25

    FANG Y F, MA W B, CHENG A J, et al. Analysis on aerodynamic effect of tunnel auxiliary facilities[J]. Railway Engineering, 2022, 62(4): 102–106. doi: 10.3969/j.issn.1003‐1995.2022.04.25
    [16] 刘堂红, 田红旗, 金学松. 隧道空气动力学实车试验研究[J]. 空气动力学学报, 2008, 26(1): 42–46. doi: 10.3969/j.issn.0258-1825.2008.01.008

    LIU T H, TIAN H Q, JIN X S. Experimental study of full-scale train on aerodynamics in tunnel[J]. Acta Aerodyna-mica Sinica, 2008, 26(1): 42–46. doi: 10.3969/j.issn.0258-1825.2008.01.008
    [17] 梅元贵. 高速铁路隧道压力波数值模拟研究[D]. 成都: 西南交通大学, 1997.

    MEI Y G. Numerical simulation of pressure wave in high-speed railway tunnel[D]. Chengdu: Southwest Jiaotong Uni-versity, 1997.
    [18] 牛纪强. 高速列车通过隧道时产生的列车风研究[J]. 铁道科学与工程学报, 2015, 12(6): 1268–1276. doi: 10.3969/j.issn.1672-7029.2015.06.002

    NIU J Q. Research on gusts caused by high-speed trains passing through tunnel[J]. Journal of Railway Science and Engineering, 2015, 12(6): 1268–1276. doi: 10.3969/j.issn.1672-7029.2015.06.002
    [19] 王磊, 骆建军, 李飞龙. 高速列车过双线隧道气动效应及列车风特性[J]. 哈尔滨工业大学学报, 2021, 53(9): 43–52. doi: 10.11918/202011011

    WANG L, LUO J J, LI F L. Aerodynamic effects and train wind characteristics of high-speed train passing through double-track tunnel[J]. Journal of Harbin Institute of Tech-nology, 2021, 53(9): 43–52. doi: 10.11918/202011011
    [20] 王磊, 骆建军, 李飞龙, 等. 高速铁路双线隧道内列车风分布及流场特性[J]. 中南大学学报: 自然科学版, 2021, 52(4): 1346–1357. doi: 10.11817/j.issn.1672-7207.2021.04.031

    WANG L, LUO J J, LI F L, et al. Train-induced wind distribution and flow field characteristics in high-speed railway double-track tunnel[J]. Journal of Central South University: Science and Technology, 2021, 52(4): 1346–1357. doi: 10.11817/j.issn.1672-7207.2021.04.031
    [21] 朴荣焕, 张继业, 李田. 时速100公里级地铁车辆通过隧道时引起的活塞风仿真研究[J]. 机械, 2021, 48(11): 41–48. doi: 10.3969/j.issn.1006-0316.2021.11.006

    PIAO R H, ZHANG J Y, LI T. Simulation study on piston wind caused by 100 km/h metro vehicles passing through tunnels[J]. Machinery, 2021, 48(11): 41–48. doi: 10.3969/j.issn.1006-0316.2021.11.006
    [22] 管鸿浩, 龚彦峰, 踪敬良, 等. 高速列车单列通过时双线隧道内列车风分布规律研究[J]. 铁道标准设计, 2022, 66(6): 83–89. doi: 10.13238/j.issn.1004-2954.202105160002

    GUAN H H, GONG Y F, ZONG J L, et al. Study on the slipstream distribution by a single train running through a double-track tunnel[J]. Railway Standard Design, 2022, 66(6): 83–89. doi: 10.13238/j.issn.1004-2954.202105160002
    [23] YAO S B, SUN Z X, GUO D L, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(6): 811–822. doi: 10.1007/s10409-013-0077-3
    [24] 柳润东, 毛军, 郗艳红. 高速铁路风障在横风与列车风耦合作用下的气动特性研究[J]. 振动与冲击, 2018, 37(3): 153–159,166. doi: 10.13465/j.cnki.jvs.2018.03.025

    LIU R D, MAO J, XI Y H. Aerodynamic load features of windbreaks of high speed railway under coupled action of cross wind and high speed train wind[J]. Journal of Vibration and Shock, 2018, 37(3): 153–159,166. doi: 10.13465/j.cnki.jvs.2018.03.025
    [25] European Committee for Standardization. BS EN 14067-5: 2006+A1: 2010 Railway applications - Aerodynamics - Part 5: Requirements and test procedures for aerodynamics in tunnels[S]. Brussels: CEN, 2010.
    [26] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127–137. doi: 10.1016/j.jweia.2014.09.007
  • 加载中
图(17)
计量
  • 文章访问数:  2964
  • HTML全文浏览量:  122
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-02
  • 录用日期:  2022-12-12
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日