留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路隧道内压缩波模拟实验装置初步研究

杨文喆 刘峰 卫梦杰 姚拴宝 陈大伟

杨文喆, 刘峰, 卫梦杰, 等. 高速铁路隧道内压缩波模拟实验装置初步研究[J]. 实验流体力学, 2023, 37(1): 36-43 doi: 10.11729/syltlx20220096
引用本文: 杨文喆, 刘峰, 卫梦杰, 等. 高速铁路隧道内压缩波模拟实验装置初步研究[J]. 实验流体力学, 2023, 37(1): 36-43 doi: 10.11729/syltlx20220096
YANG W Z, LIU F, WEI M J, et al. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43 doi: 10.11729/syltlx20220096
Citation: YANG W Z, LIU F, WEI M J, et al. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43 doi: 10.11729/syltlx20220096

高速铁路隧道内压缩波模拟实验装置初步研究

doi: 10.11729/syltlx20220096
基金项目: 国家自然科学青年基金(52002265);中国博士后科学基金(2022M712930);山东省博士后创新项目(SDCX-ZG-202203079)
详细信息
    作者简介:

    杨文喆:(1997—),男,吉林松原人,硕士研究生。研究方向:车辆空气动力学。通信地址:山西省太原市万柏林区千峰北路迎泽西大街79号太原理工大学迎西校区机械与运载工程学院车辆实验室(030024)。E-mail:ywzyoung@163.com

    通讯作者:

    E-mail:lf198187@163.com

  • 中图分类号: U25;U271.91

Experimental investigation on tunnel pressure wave of high-speed train

  • 摘要: 高速列车驶入隧道时会产生初始压缩波,其沿隧道纵向传播至出口时会向隧道外辐射形成微气压波。本文搭建了利用高压空气瞬间释放产生初始压缩波的实验装置,对其产生的压缩波开展了实验研究。介绍了实验装置的组成,分析了隧道内压力时程曲线及形成机理,给出了实验装置各参数对初始压缩波的影响规律,对压缩波的后续衰减过程进行了分析。实验结果表明:隧道内的压力波动主要受隧道出入口的反射波影响;通过改变实验装置相关参数能够对初始压缩波的波形进行调节;不同高压腔初始压力下,压缩波的衰减周期相同,但初始幅值越大,相同时间内压力衰减得越快。
  • 图  1  在离隧道入口一定距离处测量的压力变化图[5]

    Figure  1.  Pressure variation diagram measured at a certain distance from the tunnel entrance[5]

    图  2  实验装置实物图

    Figure  2.  Physical diagram of experimental device

    图  3  实验装置简图

    Figure  3.  Schematic diagram of experimental device

    图  4  隧道内整个阶段压力时程变化曲线

    Figure  4.  Pressure time history curve of the whole stage in the tunnel

    图  5  实测初始压缩波变化过程及马赫波传播图

    Figure  5.  Variation process of measured initial compression wave and Mach wave propagation diagram

    图  6  实测后续压缩波变化过程及马赫波传播图

    Figure  6.  The variation process of subsequent compression wave and Mach wave propagation diagram measured

    图  7  不同电磁阀工作电压下压缩波的压力和压力梯度曲线

    Figure  7.  Pressure and gradient curve of compression wave under different working voltages of solenoid valve

    图  8  不同初始压力下压缩波的压力和压力梯度曲线

    Figure  8.  Pressure and gradient curves of compression waves under different initial pressures

    图  9  不同PU管长度的压缩波压力曲线

    Figure  9.  Compression wave pressure curves of different PU pipe lengths

    图  10  压力衰减过程

    Figure  10.  Pressure decay process

    图  11  不同初始压力下正峰值出现的时间间隔

    Figure  11.  The time interval of positive peak at different initial pressures

    图  12  压力正峰值衰减曲线

    Figure  12.  Pressure positive peak attenuation curve

    表  1  不同工况下,压力波动的平均周期

    Table  1.   The average period of pressure fluctuation under different working conditions

    p0/kPaTmean/ms
    20035.795
    30035.759
    40036.004
    60035.921
    下载: 导出CSV
  • [1] TIAN S M, WANG W, GONG J F. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308–325. doi: 10.3973/j.issn.2096-4498.2021.02.018
    [2] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002

    YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002
    [3] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6-7): 469–514. doi: 10.1016/S0376-0421(02)00029-5
    [4] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
    [5] LIU F, YAO S, ZHANG J, et al. Field measurements of aerodynamic pressures in high-speed railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 72: 97–106. doi: 10.1016/j.tust.2017.11.018
    [6] ADAMI S, KALTENBACH H J. Sensitivity of the wave-steepening in railway tunnels with respect to the friction model[C]//Proceedings of the 6th International Colloquium on: Bluff Body Aerodynamics and Applications, Milano. 2008.
    [7] 王宏林, 雷波, 毕海权. 压缩波惯性作用对其波形演变的影响[J]. 西南交通大学学报, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017

    WANG H L, LEI B, BI H Q. Influence of inertial effect of compression wave on waveform evolution[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017
    [8] LIU F, VARDY A E, POKRAJAC D. Influence of air Chambers on wavefront steepening in railway tunnels[J]. Tunnelling and Underground Space Technology, 2021, 117: 104120. doi: 10.1016/j.tust.2021.104120
    [9] FUKUDA T, NAKAMURA S, MIYACHI T, et al. Influence of ballast quantity on compression wavefront steepening in railway tunnels[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(6): 607–615. doi: 10.1177/0954409719852263
    [10] IYER R S, KIM D H, KIM H D. Propagation characteristics of compression wave in a high-speed railway tunnel[J]. Physics of Fluids, 2021, 33(8): 086104. doi: 10.1063/5.0054868
    [11] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009
    [12] 王英学, 高波, 郑长青, 等. 高速列车进入隧道产生的微气压波实验研究[J]. 实验流体力学, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002

    WANG Y X, GAO B, ZHENG C Q, et al. Micro-compression wave model experiment on the high-speed train entering tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002
    [13] 郭易, 郭迪龙, 杨国伟, 等. 长编组高速列车的列车风动模型实验研究[J]. 力学学报, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226

    GUO Y, GUO D L, YANG G W, et al. Moving model analysis of the slipstream of a long grouping high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226
    [14] WANG J, WANG T, YANG M, et al. Effect of localized high temperature on the aerodynamic performance of a high-speed train passing through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104444. doi: 10.1016/j.jweia.2020.104444
    [15] DU J, ZHANG L, YANG M, et al. Moving model experiments on transient pressure induced by a high-speed train passing through noise barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104267. doi: 10.1016/j.jweia.2020.104267
    [16] LI X Z, WANG M, XIAO J, et al. Experimental study on aerodynamic characteristics of high-speed train on a truss bridge: a moving model test[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 26–38. doi: 10.1016/j.jweia.2018.05.012
    [17] MATSUO K. Attenuation of compression waves in a high-speed railway tunnel simulator[C]//Proc. of 7th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels. 1991.
    [18] MIYACHI T, ARAI T, SAKAUE S, et al. Development of tunnel compression wave generator with multiple small solenoid valves[J]. Mechanical Engineering Journal, 2019, 6(2): 18–478. doi: 10.1299/mej.18-00478
    [19] 朱仁庆, 杨松林, 杨大明. 实验流体力学[M]. 北京: 国防工业出版社, 2005.
    [20] MIYACHI T, FUKUDA T, SAITO S. Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch[J]. Journal of Sound and Vibration, 2014, 333(23): 6156–6169. doi: 10.1016/j.jsv.2014.06.037
    [21] BELLENOUE M, AUVITY B, KAGEYAMA T. Blind hood effects on the compression wave generated by a train entering a tunnel[J]. Experimental Thermal and Fluid Science, 2001, 25(6): 397–407. doi: 10.1016/S0894-1777(01)00088-7
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  3218
  • HTML全文浏览量:  166
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-12-01
  • 录用日期:  2022-12-05
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日