Study on electric and thermal characteristics of CO2 arc heater
-
摘要: 在300 kW管式电弧加热器上,通过试验测定了CO2介质和空气介质条件下的伏安特性和热效率数据。基于相似参数进行回归分析,得到了可同时应用于CO2介质和空气介质的电热特性关系式,并与国外类似电弧加热器进行了比较。研究结果表明:CO2和空气电弧加热器的电热特性相似,在相同输入参数(电弧电流、气体质量流量)下,CO2介质比空气介质条件下的弧室总压平均低18%,但电弧电压、焓值和热效率分别高5.9%、6.7%和10.9%;通过统一关系式得到的数据和试验数据一致性较好,伏安特性和热效率回归误差分别为−13%~11.4%和−33.0%~34.7%。Abstract: On the 300 kW DC axial tube electrode arc heater, the U–I characteristics and thermal efficiency of CO2 and air are measured by experiment, and the regression analysis is carried out by using the similarity criterion number. The unified relationship of electric and thermal characteristics that can be applied to the two media is obtained, and compared with similar heaters abroad. The results show that CO2 and air arc heaters have similar electric and thermal characteristics, under the same input parameters (arc current and gas flow); the total pressure of CO2 is 18% lower than that of air, but the arc voltage, enthalpy and thermal efficiency are 5.9%, 6.7% and 10.9% higher respectively; the regression errors of U–I characteristics and thermal efficiency are −13.0%~11.4% and −33.0%~34.7% respectively. This relationship plays an important guiding role in the operation and commissioning of the high-power arc heater.
-
Key words:
- CO2 /
- arc heater /
- U–I characteristic /
- thermal efficiency /
- similarity theory
-
表 1 试验条件
Table 1. Test condition
调整参数 参数范围 空气 CO2 长径比L/D 8.3,11.1,14.6 Dc/Da 1.25,1.67 电弧电流I/A 100~1000 励磁电流IB/A 0~50 气体质量流量G/(g·s−1) 5.0~13.4 6.0~12.0 表 2 回归方程显著性检验
Table 2. Significance verification of regression equation
方程 R2 σ2 QR QE F $|t| $ 显著性检验结果 4 0.988 0.041 50.845 0.223 14826.2 148.3(Πh),22.3(ΠRe) 显著 5 0.989 0.029 6.305 0.0476 3772.3 84.3(Πh),18.7(ΠRe) 显著 7 0.996 0.038 77.289 0.306 12990.6 170.7(Πh),24.0(ΠRe),5.9(Dc/Da),52.7(Pr) 显著 注:R为复相关系数;σ2为标准方差;QR为回归离差平方和,QE为残差平方和;F=[QR/k][QE/(n−k−1)],n为自由度,k为自变量个数;$|t| $为自变量的t校验系数。 -
[1] 唐伟, 杨肖峰, 桂业伟, 等. 火星进入器高超声速气动力/热研究综述[J]. 宇航学报, 2017, 38(3): 230–239. doi: 10.3873/j.issn.1000-1328.2017.03.002TANG W, YANG X F, GUI Y W, et al. Review of hypersonic aerodynamics and aerothermodynamics for Mars entries[J]. Journal of Astronautics, 2017, 38(3): 230–239. doi: 10.3873/j.issn.1000-1328.2017.03.002 [2] 苗文博, 吕俊明, 程晓丽, 等. 火星进入热环境预测的热力学模型数值分析[J]. 计算物理, 2015, 32(4): 410–415. doi: 10.19596/j.cnki.1001-246x.2015.04.005MIAO W B, LV J M, CHENG X L, et al. Numerical analysis of thermodynamics models for Mars entry aeroheating prediction[J]. Chinese Journal of Computational Physics, 2015, 32(4): 410–415. doi: 10.19596/j.cnki.1001-246x.2015.04.005 [3] BOULOS M I, FAUCHAIS P L, PFENDER E, et al. Handbook of thermal plasmas[M]. Cham, Switzerland: Springer Nature Switzerland AG, 2017. doi: 10.1007/978-3-319-12183-3 [4] NOTTINGHAM W B. Normal arc characteristic curves: dependence on absolute temperature of anode[J]. Physical Review, 1926, 28(4): 764–768. doi: 10.1103/physrev.28.764 [5] YAS’KO O I. Some aspects of the generalization of electric arc characteristics[J]. Pure and Applied Chemistry, 1990, 62(9): 1817–1824. doi: 10.1351/pac199062091817 [6] ZHIDOVICH A I, YAS'KO O I. Certain problems in generalizing the volt-ampere characteristics of electric arcs swept by various gases[J]. Journal of Engineering Physics, 1969, 16(3): 367–371. doi: 10.1007/BF01840640 [7] ZHUKOV M F, ZASYPKIN I M. Thermal plasma torches: design, characteristics, application[M]. Great Abington, Cambridge: Cambridge International Science Publishing, 2007. [8] BRILHAC J F, PATEYRON B, COUDERT J F, et al. Study of the dynamic and static behavior of de vortex plasma torches: part II: well-tye cathode[J]. Plasma Chemistry and Plasma Processing, 1995, 15(2): 257–277. doi: 10.1007/BF01459699 [9] PAINGANKAR A M, DAS A K, SHIRODKAR V S, et al. Prediction of electrical characteristics of a non-transferred arc-plasma torch using principles of dynamic similarity[J]. Plasma Sources Science and Technology, 1999, 8(1): 100–109. doi: 10.1088/0963-0252/8/1/013 [10] VALIN IUS V, KRU INSKAITE V, VALATKEVI IUS P, et al. Electric and thermal characteristics of the linear, sectional dc plasma generator[J]. Plasma Sources Science and Technology, 2004, 13(2): 199–206. doi: 10.1088/0963-0252/13/2/002 [11] 金佑民, 梁万林. 旋流稳定空气等离子体电弧广义特性的研究[J]. 北方工业大学学报, 1988(1): 17–22.JIN Y M, LIANG W L. Research on generalized charactristic of vortex-stabilized air plasma arc[J]. Journal of North China University of Technology, 1988(1): 17–22. [12] LI G, PAN W X, MENG X, et al. Application of similarity theory to the characterization of non-transferred laminar plasma jet generation[J]. Plasma Sources Science and Technology, 2005, 14(2): 219–225. doi: 10.1088/0963-0252/14/2/002 [13] CAO X Q, YU D P, SHI J L, et al. Application of similarity theory to the characteristics of laminar plasma torch with pure nitrogen[J]. IEEE Transactions on Plasma Science, 2020, 48(5): 1249–1258. doi: 10.1109/TPS.2020.2984659 [14] 程昌明, 唐德礼, 兰伟. 基于相似理论的等离子体炬电热特性研究[J]. 核聚变与等离子体物理, 2007, 27(3): 247–250. doi: 10.3969/j.issn.0254-6086.2007.03.015CHENG C M, TANG D L, LAN W. Research on electric and thermal characteristics of plasma torch based on similarity theory[J]. Nuclear Fusion and Plasma Physics, 2007, 27(3): 247–250. doi: 10.3969/j.issn.0254-6086.2007.03.015 [15] 隆永胜, 袁竭, 姚峰, 等. 大功率电弧加热器关键技术概述[J]. 西北工业大学学报, 2021, 39(4): 776–785. doi: 10.1051/jnwpu/20213940776LONG Y S, YUAN J, YAO F, et al. Overview of key technologies of high power arc heater[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 776–785. doi: 10.1051/jnwpu/20213940776 [16] 何金波. 旋转弧等离子体重整沼气制合成气的研究[D]. 杭州: 浙江大学, 2014.HE J B. Reforming of biogas to synthesis gas by rotating arc plasma[D]. Hangzhou: Zhejiang University, 2014. [17] DEL PAPA S D, SUESS L, SHAFER B. The development of a CO2 test capability in the NASA JSC ARCJet for Mars reentry simulation[C]// Proc of the 8th International Planetary Probe Workshop. 2011. [18] SPLINTER S, BEY K, GRAGG J, et al. Comparative measurements of earth and Martian entry environments in the NASA langley HYMETS facility[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 1014. doi: 10.2514/6.2011-1014 [19] MINOO H, ARSAOUI A, BOUVIER A. An analysis of the cathode region of a vortex-stabilized arc plasma generator[J]. Journal of Physics D:Applied Physics, 1995, 28(8): 1630–1648. doi: 10.1088/0022-3727/28/8/012 [20] 过增元, 赵文华. 电弧和热等离子体[M]. 北京: 科学出版社, 1986. -