留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双垂直楔交叉激波与转捩边界层干扰

易淼荣 张若凌 岳茂雄 李莉 任虎 赵慧勇

易淼荣,张若凌,岳茂雄,等. 双垂直楔交叉激波与转捩边界层干扰[J]. 实验流体力学,2022,36(X):1-12 doi: 10.11729/syltlx20220050
引用本文: 易淼荣,张若凌,岳茂雄,等. 双垂直楔交叉激波与转捩边界层干扰[J]. 实验流体力学,2022,36(X):1-12 doi: 10.11729/syltlx20220050
YI M R,ZHANG R L,YUE M X,et al. Crossing shock waves/transitional boundary layers interactions in the double vertical wedges configuration[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-12. doi: 10.11729/syltlx20220050
Citation: YI M R,ZHANG R L,YUE M X,et al. Crossing shock waves/transitional boundary layers interactions in the double vertical wedges configuration[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-12. doi: 10.11729/syltlx20220050

双垂直楔交叉激波与转捩边界层干扰

doi: 10.11729/syltlx20220050
基金项目: 国家自然科学基金(12002362)
详细信息
    作者简介:

    易淼荣:(1989—),男,湖南怀化人,助理研究员。研究方向:吸气式高超声速技术,湍流与转捩。通信地址:四川省绵阳市二环路南段6号1902信箱(621000)。E-mail:hnhhhjtw@163.com

    通讯作者:

    E-mail:zhangruoling@163.com

  • 中图分类号: V211.73

Crossing shock waves/transitional boundary layers interactions in the double vertical wedges configuration

  • 摘要: 针对超声速双垂直楔构型产生的交叉激波与转捩边界层干扰现象,结合风洞试验与数值模拟进行了深入研究。试验在中国空气动力研究与发展中心Φ 600 mm脉冲燃烧风洞中开展,来流马赫数3.0,单位雷诺数2.1×106 m−1,获得了流场纹影、壁面压力和壁面热流。结果表明:受交叉激波逆压梯度作用,层流边界层在激波交汇附近产生分离,并在干扰区迅速转捩;在上游安装斜坡型涡流发生器或粗糙带,诱导边界层在干扰前转捩为湍流,分离区被有效抑制,干扰区热流明显下降(热流峰值下降超过25%)。数值模拟和风洞试验得到的激波结构、壁面压力吻合良好,但壁面热流计算值明显大于试验值。对比转捩模型和湍流模型计算结果发现:明显偏高的湍流黏性系数是RANS方法在非分离区过高预测干扰区热流的主要原因。
  • 图  1  垂直楔几何构型示意图

    Figure  1.  Sketch of the geography of vertical wedges

    图  2  脉冲燃烧风洞示意图[24]

    Figure  2.  Sketch of pulse combustion wind tunnel[24]

    图  3  试验中的2种模型摆放方式

    Figure  3.  Two ways of placing the model during the test

    图  4  E型同轴热电偶典型标定信号和标定结果

    Figure  4.  Calibration signal and results of type E coaxial thermocouple

    图  5  试验期间的典型热流值

    Figure  5.  Typical heat fluxes during test

    图  6  采用不同网格计算得到的壁面压力和热流分布

    Figure  6.  Heat fluxes and pressure distribution calculated using different grids

    图  7  计算得到的x=–120 mm处边界层内速度分布

    Figure  7.  Velocity distribution of the x=–120 mm boundary layer by calculation

    图  8  斜坡型粗糙颗粒尺寸

    Figure  8.  The geography of ramp vortex generators

    图  9  计算和试验得到的激波结构

    Figure  9.  Shock waves structures obtained by tests and simulation

    图  10  试验测量纹影图像

    Figure  10.  Schlieren maps during test

    图  11  计算得到的流场结构

    Figure  11.  Flow field structures obtained by calculation

    图  12  试验与计算壁面热流分布对比

    Figure  12.  Heat flux distributions obtained from test and calculation

    图  13  转捩模型计算得到的不同z截面γ分布

    Figure  13.  Contours of γ in different z constant planes obtained by transition model

    图  14  计算得到的不同z截面μt分布

    Figure  14.  Contours of μt in different z planes

    图  15  计算得到的底板壁面热流云图

    Figure  15.  Calculated contours of heat fluxes in the base flat plate

    图  16  试验与计算壁面压力对比

    Figure  16.  Pressure distributions obtained from test and calculation

    图  17  计算得到的底板壁面压力云图及摩擦力线分布

    Figure  17.  Calculated contours of pressure in the base flat plate

    表  1  试验来流条件

    Table  1.   Freestream condition of the test

    马赫数总温
    Tt/K
    总压
    pt/MPa
    单位雷诺数
    Re/(106 m−1
    来流组分摩尔比
    (O2∶N2∶H2O)
    比热比
    3.013500.3352.10.21∶0.56∶0.231.34
    下载: 导出CSV

    表  2  x>0区域xyz方向上网格数

    Table  2.   Grid numbers in x, y, z directions in the x>0 area

    网格nxnynz
    粗网格(rough)1418171
    基准网格(base)201121101
    密网格(fine)401181151
    下载: 导出CSV
  • [1] 吴瀚,王建宏,黄伟,等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报,2021,42(6):025371. doi: 10.7527/S1000-6893.2021.25371

    WU H,WANG J H,HUANG W,et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6):025371. doi: 10.7527/S1000-6893.2021.25371
    [2] 张悦,谭慧俊,王子运,等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术,2020,41(2):241-259. doi: 10.13675/j.cnki.tjjs.190376

    ZHANG Y,TAN H J,WANG Z Y,et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology,2020,41(2):241-259. doi: 10.13675/j.cnki.tjjs.190376
    [3] GARRISON T J, SETTLES G S. Flowfield visualization of crossing shock-wave/boundary-layer interactions[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992: 750. doi: 10.2514/6.1992-750
    [4] THIVET F. Lessons learned from RANS simulations of shock-wave/boundary-layer interactions[R]. AIAA 2002-0583. doi: 10.2514/6.2002-583
    [5] 赵慧勇,雷波,乐嘉陵. 非对称交叉激波和湍流边界层相互作用的数值研究[J]. 航空动力学报,2009,24(10):2183-2188. doi: 10.13224/j.cnki.jasp.2009.10.009

    ZHAO H Y,LEI B,LE J L. Numerical investigation of interaction between asymmetric crossing shock waves/turbulence boundary layer[J]. Journal of Aerospace Power,2009,24(10):2183-2188. doi: 10.13224/j.cnki.jasp.2009.10.009
    [6] ZHELTOVODOV A A,MAKSIMOV A I,SHEVCHENKO A. Topology of three-dimensional separation under the conditions of symmetric interaction of crossing shocks and expansion waves with turbulent boundary layer[J]. Thermophysics and Aeromechanics,1998,5(3):293-312.
    [7] ZHELTOVODOV A A,MAKSIMOV A I,GAITONDE D,et al. Experimental and numerical study of symmetric interaction of crossing shocks and expansion waves with a turbulent boundary layer[J]. Thermophysics and Aeromechanics,2016,23(2):155-171.
    [8] ZHELTOVODOV A A, MAKSIMOV A I. Hypersonic crossing shock-waves/turbulent boundary layer interaction[R]. ADA363672. 1999.
    [9] ZHELTOVODOV A A, MAKSIMOV A I, SCHÜLEIN E, et al. verification of crossing-shock wave/boundary layer interaction computations with the k-ε turbulence model[C]// Proc of the 10th International Conference on Methods of Aerophysical Research. 2000: 231-241.
    [10] (英)霍格尔·巴宾斯基, 约翰·K. 哈维. 激波边界层干扰[M]. 白菡尘, 译. 北京: 国防工业出版社, 2015.

    BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. translated by BAI H C. Beijing: National Defense Industry Press, 2015.
    [11] KNIGHT D,MORTAZAVI M. Hypersonic shock wave transitional boundary layer interactions - A review[J]. Acta Astronautica,2018,151:296-317. doi: 10.1016/j.actaastro.2018.06.019
    [12] TOKURA Y, MAEKAWA H. DNS of a spatially evolving transitional/turbulent boundary layer with impinging shock wave[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 729. doi: 10.2514/6.2011-729
    [13] DAVIDSON T S C, BABINSKY H. Transition location effects on normal shock wave: boundary layer interactions[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 1975. doi: 10.2514/6.2015-1975
    [14] POLIVANOV P A, SIDORENKO A A, MASLOV A A, et al. Transition effect on shock wave/boundary layer interac-tion at M=1.47[C]// Proc of the 53rd AIAA Aerospace Sciences Meeting. 1974.
    [15] THREADGILL J A, LITTLE J C, WERNZ S H. Transitional shock wave boundary layer interactions on a compression ramp at Mach 4[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0343. doi: 10.2514/6.2019-0343
    [16] 武宇. 超声速压缩拐角流动机理及其流动分离控制的试验研究[D]. 长沙: 国防科学技术大学, 2015.

    WU Y. Experimental investigation of supersonic flow over A compression ramp and its flow control on separation[D]. Changsha: National University of Defense Technology, 2015.
    [17] 武宇,易仕和,陈植,等. 超声速层流/湍流压缩拐角流动结构的实验研究[J]. 物理学报,2013,62(18):316-327. doi: 10.7498/aps.62.184702

    WU Y,YI S H,CHEN Z,et al. Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp[J]. Acta Physica Sinica,2013,62(18):316-327. doi: 10.7498/aps.62.184702
    [18] 童福林,唐志共,李新亮,等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报,2016,37(12):3588-3604. doi: 10.7527/S1000-6893.2016.0096

    TONG F L,TANG Z G,LI X L,et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2016,37(12):3588-3604. doi: 10.7527/S1000-6893.2016.0096
    [19] 童福林,李新亮,唐志共,等. 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报,2016,37(10):2909-2921. doi: 10.7527/S1000-6893.2015.0355

    TONG F L,LI X L,TANG Z G,et al. Transition effect on separation bubble of shock wave/boundary layer interaction in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2016,37(10):2909-2921. doi: 10.7527/S1000-6893.2015.0355
    [20] 童福林,李新亮,段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报,2017,38(12):121376. doi: 10.7527/S1000-6893.2017.121376

    TONG F L,LI X L,DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2017,38(12):121376. doi: 10.7527/S1000-6893.2017.121376
    [21] 童福林,李新亮,唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报,2017,49(1):93-104. doi: 10.6052/0459-1879-16-224

    TONG F L,LI X L,TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):93-104. doi: 10.6052/0459-1879-16-224
    [22] 解少飞,宫建,高波,等. 边界层转捩与压缩拐角分离流动的非定常作用[J]. 空气动力学学报,2017,35(1):129-135. doi: 10.7638/kqdlxxb-2015.0104

    XIE S F,GONG J,GAO B,et al. Unsteady interaction between transitional boundary layer and flow separation in compression corner[J]. Acta Aerodynamica Sinica,2017,35(1):129-135. doi: 10.7638/kqdlxxb-2015.0104
    [23] LE J L, LIU W, HE W, et al. Pulse combustion facility and its preliminary application in scramjet research[C]//Proc of the 11th International Conference on Methods of Aerophysical Research. 2002.
    [24] 贺元元,贺伟,张小庆,等. 燃烧加热脉冲风洞气动/推进一体化试验研究[J]. 推进技术,2017,38(8):1741-1746.

    HE Y Y,HE W,ZHANG X Q,et al. Aero-propulsion integration test in combustion heated impulse facility[J]. Journal of Propulsion Technology,2017,38(8):1741-1746.
    [25] 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013: 79-103.
    [26] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳: 中国空气动力研究与发展中心, 2005.

    ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center, 2005.
    [27] 易淼荣,赵慧勇,乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学,2018,32(4):1-11. doi: 10.11729/syltlx20180019

    YI M R,ZHAO H Y,LE J L. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):1-11. doi: 10.11729/syltlx20180019
    [28] 韩亦宇. 高超声速进气道激波振荡的DES数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014.

    HAN Y Y. Detached eddy simulation(DES) of hypersonic inlet shock oscillation[D]. Mianyang: China Aerodynamics Research and Development Center, 2014.
    [29] 易淼荣,赵慧勇,乐嘉陵,等. 基于IDDES框架的γ-Reθ转捩模型[J]. 航空学报,2019,40(8):122726. doi: 10.7527/S1000-6893.2018.22726

    YI M R,ZHAO H Y,LE J L,et al. γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):122726. doi: 10.7527/S1000-6893.2018.22726
    [30] 赵慧勇,雷波,乐嘉陵. 对称交叉激波和湍流边界层相互作用的数值研究[J]. 推进技术,2010,31(4):406-411. doi: 10.13675/j.cnki.tjjs.2010.04.011

    ZHAO H Y,LEI B,LE J L. Numerical investigation of interaction between symmetric crossing shock waves/turbulence boundary layer[J]. Journal of Propulsion Technology,2010,31(4):406-411. doi: 10.13675/j.cnki.tjjs.2010.04.011
    [31] THIVET F, KNIGHT D D, ZHELTOVODOV A A, et al. Some insights in turbulence modeling for crossing-shock-wave/boundary-layer interactions[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000: 131. doi: 10.2514/6.2000-131
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  197
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-08-15
  • 录用日期:  2022-09-05
  • 网络出版日期:  2022-10-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日