留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速风洞稀薄流场转动温度和振动温度测量研究

陈爱国 田颖 王杰 杨彦广 李志辉 李中华 李震乾

陈爱国, 田颖, 王杰, 等. 高超声速风洞稀薄流场转动温度和振动温度测量研究[J]. 实验流体力学, doi: 10.11729/syltlx20210192
引用本文: 陈爱国, 田颖, 王杰, 等. 高超声速风洞稀薄流场转动温度和振动温度测量研究[J]. 实验流体力学, doi: 10.11729/syltlx20210192
CHEN A G, TIAN Y, WANG J, et al. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20210192
Citation: CHEN A G, TIAN Y, WANG J, et al. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20210192

高超声速风洞稀薄流场转动温度和振动温度测量研究

doi: 10.11729/syltlx20210192
详细信息
    作者简介:

    陈爱国:(1973—),男,湖北仙桃,硕士,研究员。研究方向:高超声速低密度风洞设计和试验技术研究。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:chenaiguo@cardc.cn

    通讯作者:

    E-mail:chenaiguo@cardc.cn

  • 中图分类号: V211.7

Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field

  • 摘要: 稀薄流场中的转动温度、振动温度不一致是热力学非平衡的具体表现,采用电子束荧光技术这一非接触测量手段可测量稀薄流场转动温度和振动温度。本文介绍了电子束荧光技术测量稀薄流场转动温度、振动温度的基本原理和方法,给出了在Φ0.3米高超声速低密度风洞开展喷管出口稀薄流场转动温度、振动温度的测量结果。重复性测量结果表明:转动温度最大相对不确定度为0.26%,振动温度最大相对不确定度为0.8%;M12、M16锥形喷管出口截面上的转动温度和振动温度结果分布体现了锥形喷管膨胀流动的特点,各喷管三个状态的测量结果表明随稀薄度增加,振动温度与转动温度的偏差越大,热力学非平衡现象越突出。
  • 图  1  电子束激发荧光原理图

    Figure  1.  Principle of electron beam excitation-fluorescence

    图  2  电子枪在风洞实验段顶部

    Figure  2.  Electron gun at the top of low density wind tunnel test section

    图  3  转动温度、振动温度测量设备布局示意图

    Figure  3.  Sketch of Tr and Tv measurement facilities

    图  4  电子束荧光测量转动温度、振动温度示意图

    Figure  4.  Tr and Tv measurement sketch of the EBF

    图  5  室温静态下的电子束荧光照片

    Figure  5.  EBF photo of static room temperature

    图  6  室温静态下的电子束荧光转动谱线

    Figure  6.  Rotational spectrum at room temperature

    图  7  振动温度标定设备示意图

    Figure  7.  Sketch of Tv calibration facility

    图  8  各温度测量的振动谱带

    Figure  8.  Vibrational band at calibration temperature

    图  9  振动温度标定曲线

    Figure  9.  Calibration curve of Tv

    图  10  高超声速低密度流场中的电子束荧光照片

    Figure  10.  EBF photo in hypersonic low density flow (M12、p0=2 MPa、T0=600 K)

    图  11  稀薄流场和静态室温转动谱线

    Figure  11.  Rotational line at rarefied flow and room temperature

    图  12  转动温度分布10次重复性测量结果(Case2)

    Figure  12.  Ten measurements results of rotational temperature (Case2)

    图  13  转动温度测量的相对不确定度分布(Case2)

    Figure  13.  Relative uncertainty distribution of rotational temperature (Case2)

    图  14  M12喷管出口三个截面转动温度分布(Case1)

    Figure  14.  Rotational temperature distribution of three sections (Case1)

    图  15  M12喷管出口X=100 mm截面转动温度分布(Case1/2/3)

    Figure  15.  Rotational temperature distribution of X=100 mm section (Case1/2/3)

    图  16  稀薄流场和静态室温的振动谱带

    Figure  16.  vibrational band at rarefied flow and room temperature

    图  17  振动温度7次重复测量结果(Case1)

    Figure  17.  Seven measurements results of vibrational temperature (Case1)

    图  18  振动温度测量的相对不确定度分布(Case1)

    Figure  18.  Relative uncertainty distribution of vibrational temperature (Case1)

    图  19  M16喷管出口X=100 mm截面振动温度分布(Case4/5/6)

    Figure  19.  Vibrational temperature distribution of X=100 mm section (Case4/5/6)

    图  20  喷管出口热力学非平衡程度随平均自由程λ的变化

    Figure  20.  Thermal nonequilibrium varies with λ of nozzle exit

    表  1  室温静态转动温度测量结果

    Table  1.   Tr result at room temperature (K)

    TrPoint 1Point 2Point 3Point 4
    Run 1304.9300.2297.7291.95
    Run 2303.2298.5295297.45
    Run 3296.9297.9300.8301.83
    Average301.65298.85297.81297.08
    Deviation0.88%−0.05%−0.39%−0.64%
    下载: 导出CSV

    表  2  风洞实验状态参数表

    Table  2.   Experimental parameters of wind tunnel

    Serial名义Mp0/MPaT0/K
    Case1120.3600
    Case 2121600
    Case 3122600
    Case 4160.6930
    Case 5161930
    Case 6162930
    下载: 导出CSV

    表  3  转动温度和振动温度测量结果

    Table  3.   Experimental results of Tr and Tv

    Serialλ/cmTv/KTr/KTvTr/K
    Case10.0240317.5322.77294.76
    Case20.0077266.8323.92242.91
    Case30.0040267.9631.97235.99
    Case40.0529520.5722.63497.94
    Case50.0327507.4121.27486.14
    Case60.0184447.6921.48426.21
    下载: 导出CSV
  • [1] 梁杰, 李志辉, 杜波强, 等. 探月返回器稀薄气体热化学非平衡特性数值模拟[J]. 载人航天, 2015, 21(3): 295–302. doi: 10.3969/j.issn.1674-5825.2015.03.014

    LIANG J, LI Z H, DU B Q, et al. Numerical simulation of rarefied gas thermochemical nonequilibrium when lunar exploration vehicle re-entering into atmosphere[J]. Manned Spaceflight, 2015, 21(3): 295–302. doi: 10.3969/j.issn.1674-5825.2015.03.014
    [2] 赵娅, 袁军娅, 任翔. 微喷管中稀薄流动时热力学非平衡现象研究[J]. 火箭推进, 2020, 46(3): 19–25,40. doi: 10.3969/j.issn.1672-9374.2020.03.003

    ZHAO Y, YUAN J Y, REN X. Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle[J]. Journal of Rocket Propulsion, 2020, 46(3): 19–25,40. doi: 10.3969/j.issn.1672-9374.2020.03.003
    [3] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.

    SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003.
    [4] 吴其芬, 陈伟芳, 黄琳, 等. 稀薄气体动力学[M]. 长沙: 国防科技大学出版社, 2004.
    [5] 瞿章华, 刘伟, 曾明, 等. 高超声速空气动力学[M]. 长沙: 国防科技大学出版社, 2001.
    [6] BIRD G A. Molecular gas dynamics[M]. Oxford: Clarendon Press, 1976.
    [7] BIRD G A. 分子气动力学及气体流动的直接模拟[M]. 方明, 李志辉, 译. 北京: 科学出版社, 2019.
    [8] 陈伟芳, 赵文文. 稀薄气体动力学矩方法及数值模拟[M]. 北京: 科学出版社, 2017.

    CHEN W F, ZHAO W W. Rarefied gas dynamic moment method and numerical simulation[M]. Beijing: Science Press, 2017.
    [9] LUTFY F M, MUNTZ E P. The pulsed electron beam fluorescence technique[R]. AIAA 2000-2487, 2000. doi: 10.2514/6.2000-2487
    [10] WILLIAMS W D, HORNKOHL J O, LEWIS J W L. Electron beam probe for a low density hypersonic wind tunnel[R]. AEDC-TR-71-61, 1971.
    [11] LEWIS J W L, WILLIAMS W D. Electron beam fluorescence diagnostics of a ternary gas mixture[R]. AEDC-TR-73-96, 1973.
    [12] HARBOUR P J, Lewis J H. Preliminary measurements of the hypersonic rarefied flow field on a sharp plate using electron beam probe[M]// BRUNDIN C L. Rarefied Gas Dynamics. America: Academic Press, 1967.
    [13] MOHAMED A K, POT T, CHANETZ B. Diagnostics by electron beam fluorescence in hypersonics[C]//Proc of the 16th International Congress on Instrumentation in Aerospace Simulation Facilities. 1995. doi: 10.1109/ICIASF.1995.519120
    [14] CATTOLICA R J. Electron-beam fluorescence measurements in hypersonic flows[C]// Proc of the Von Karman Institute for Fluid Dynamics Lecture Series. 1990.
    [15] GOCHBERG L A. The electron beam fluorescence technique in hypersonic aerothermodynamics[C]//Proc of the 25th Plasmadynamics and Lasers Conference. 1994. doi: 10.2514/6.1994-2635
    [16] MASLOV A A, MIRONOV S G. Electron-beam diagnostics of hypersonic flows[J]. 流体力学实验与测量, 1998, 12(4): 42–52.
    [17] MASLOV A A, MIRONOV S G, SHIPLYUK A N. An experimental electron beam study of perturbations in a hypersonic shock layer on a plate[C]//Proc of the 8th Int. Conf. on Methods of Aerophysical Research. 1996.
    [18] SUKHININ G I A. Spacial distribution of parameters of diagnostic electron beam[C]//Proc of the 6th Allunion Conf. on Rarefied Gas Dynamics. 1979.
    [19] 叶希超. 电子束技术测量低密度风洞氮气流振动温度、转动温度及数密度[J]. 气动实验与测量控制, 1989, 3(1): 71–77.

    YE X C. Measurement of vibrational temperature, otationarl temperature and number density in nitrogen flows of low density wind tunnel using electron beam technique[J]. Journal of Experiments in Fluid Mechanics, 1989, 3(1): 71–77.
    [20] 陈爱国, 王杰, 李中华, 等. 脉冲电子束荧光技术测量稀薄流场速度研究[J]. 气体物理, 2021, 6(5): 67–71. doi: 10.19527/j.cnki.2096-1642.0892

    CHEN A G, WANG J, LI Z H, et al. Velocity measurement investigation of rarefied flow field by pulse electron beam fluorescence technique[J]. Physics of Gases, 2021, 6(5): 67–71. doi: 10.19527/j.cnki.2096-1642.0892
    [21] MASLOV A A, MIRONOV S G, SAFRONOV Y A. Application of electron beam fluorescence to measure velocities in hypersonic wind tunnels[C]//Proc of the 6th Int. Conf. on Methods of Aerophysical Research. 1992.
    [22] MASLOV A A, MIRONOV S G, SAFRONOV Y A. Velocity measurements on a flat plate in the hypersonic flow by electron beam fluorescence method[C]//Proc of the 7th Int. Conf. on Methods of Aerophysical Research. 1994.
    [23] LUFTY F M, MUNTZ E P. Initial experimental study of pulsed electron beam fluorescence[J]. AIAA Journal, 1996, 34(3): 478–482. doi: 10.2514/3.13092
    [24] WILLIAMS W D, SHERROUSE P M, CROSSWY F L, et al. AEDC development of the pulsed electron beam fluorescence (PEBF) technique for hypersonic test facility applications[R]. AIAA-2002-5155, 2002.
    [25] MOHAMED A K. Electron beam velocimetry[M]//New Trends in Instrumentation for Hypersonic Research. Dordrecht: Springer Netherlands, 1993: 373-380. doi: 10.1007/978-94-011-1828-6_34
    [26] 林贞彬, 朱进生, 郭大华. 电子束荧光技术用于测量高超声速飞行器流场密度[J]. 气动实验与测量控制, 1993, 7(4): 44–48.

    LIN Z B, ZHU J S, GUO D H. Measurement of density in hypersonic flow field by electron beam fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(4): 44–48.
    [27] 陈爱国, 李震乾, 田颖, 等. 高超声速低密度流场参数测量方法[C]//中国空气动力学会测控专业委员会第六届六次全国学术交流会论文集. 2015

    CHEN A G, LI Z Q, TIAN Y, et al. Parameters measurement method of hypersonic low density flow field [C]//Proceedings of the 6th National Academic Exchange Conference of Measurement and Control Committee of Chinese Aerodynamic Society. 2015.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  94
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-12-14
  • 录用日期:  2022-12-16
  • 网络出版日期:  2023-05-17

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日