留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

民用航空发动机燃烧室试验技术分析与研究

孟刚 何敏 张经纬 陈志龙 秦皓 郑丹

孟刚,何敏,张经纬,等. 民用航空发动机燃烧室试验技术分析与研究[J]. 实验流体力学,2022,36(5):34-42 doi: 10.11729/syltlx20210177
引用本文: 孟刚,何敏,张经纬,等. 民用航空发动机燃烧室试验技术分析与研究[J]. 实验流体力学,2022,36(5):34-42 doi: 10.11729/syltlx20210177
MENG G,HE M,ZHANG J W,et al. Research on test technology of civil aero-engine combustor[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):34-42. doi: 10.11729/syltlx20210177
Citation: MENG G,HE M,ZHANG J W,et al. Research on test technology of civil aero-engine combustor[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):34-42. doi: 10.11729/syltlx20210177

民用航空发动机燃烧室试验技术分析与研究

doi: 10.11729/syltlx20210177
详细信息
    作者简介:

    孟刚:(1981—),男,陕西汉中人,高级工程师。研究方向:航空发动机燃烧室试验技术研究工作。通信地址:上海市浦东新区鸿音路77号(200241)。E-mail:menggang@acae.com.cn

    通讯作者:

    E-mail:menggang@acae.com.cn

  • 中图分类号: V231.2

Research on test technology of civil aero-engine combustor

  • 摘要: 近年来,我国的大型客机发动机研制正处于攻坚阶段,零部件试验和整机试验均在大量开展。为了更好地支撑我国民用航空发动机低污染燃烧室的研发工作,阐述了大涵道比涡扇航空发动机燃烧室的典型研发路径,并对单头部、多头部和全环燃烧室3个研发阶段的试验技术进行了重点分析,介绍了每一阶段的主要试验内容、试验过程、试验设备、测试技术、关键环节以及各阶段试验面临的共性问题;同时,在燃烧室试验压力与温度、测试技术、试验研究的丰富性与前瞻性等方面进行了国内外对比分析,总结了我国民机燃烧室试验技术的发展现状,可为国内相关单位在研发民机低污染燃烧室、建设试验器、提升测试能力和填补技术空白等方面提供借鉴。
  • 图  1  典型民机燃烧室研发技术路线图[8]

    Figure  1.  Typical roadmap of civil combustor development[8]

    图  2  GE公司可调频燃烧室声学试验台[8]

    Figure  2.  Tunable combustor acoustics rig of GE[8]

    图  3  RR公司燃烧室光学测试试验段[14]

    Figure  3.  Optical measurement test rig of RR[14]

    图  4  RR公司扇形燃烧室高空点火试验结果[15]

    Figure  4.  Sector ignition test results of RR[15]

    图  5  扇形燃烧室高压试验舱[17]

    Figure  5.  Test plenum for sector combustor[17]

    图  6  扇形燃烧室出口扫描测量机构[17]

    Figure  6.  Traverse gear for sector combustor measurement[17]

    图  7  法国DGA全环燃烧室出口旋转测量机构[1]

    Figure  7.  Traverse gear for full-annual combustor measurement of DGA[1]

    图  8  Setscan喷雾分布测量仪[27]

    Figure  8.  Setscan patternator of spray distribution[27]

    图  9  Setscan测量雾锥截面密度分布图[27]

    Figure  9.  Cross-section spray distribution by Setscan[27]

  • [1] 陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社, 2006.
    [2] 金捷, 岳明. 燃气涡轮发动机低污染燃烧室的发展趋势及思考[C]//中国航空学会2007年学术年会议论文集. 2007.
    [3] 赵坚行. 民用发动机污染排放及低污染燃烧技术发展趋势[J]. 航空动力学报,2008,23(6):986-996.

    ZHAO J X. Pollutant emission and development of low-emission combustion technology for civil aero engine[J]. Journal of Aerospace Power,2008,23(6):986-996.
    [4] 张宝诚. 航空发动机燃烧室的现状和发展[J]. 航空发动机,2013,39(6):67-73. doi: 10.3969/j.issn.1672-3147.2013.06.013

    ZHANG B C. Status and development of aeroengine com-bustors[J]. Aeroengine,2013,39(6):67-73. doi: 10.3969/j.issn.1672-3147.2013.06.013
    [5] 张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2):332-350.

    ZHANG C,LIN Y Z,XU H S,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2):332-350.
    [6] 航空航天工业部高效节能发动机文集编委会. 高效节能发动机文集(第4分册): 燃烧室设计与试验[M]. 北京: 航空工业出版社, 1991.
    [7] 尉曙明. 先进燃气轮机燃烧室设计研发[M]. 上海: 上海交通大学出版社, 2014.

    YU S M. Advanced gas turbine combustor design and development[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.
    [8] FOUST M, THOMSEN D, STICKLES R, et al. Develop-ment of the GE aviation low emissions TAPS combustor for next generation aircraft engines[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-936
    [9] LAZIK W, DOERR T, BAKE S, et al. Development of lean-burn low-NOx combustion technology at rolls-Royce Deutsch-land[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009: 797-807. doi: 10.1115/GT2008-51115
    [10] 张川,索建秦,金如山. 民用飞机低污染燃烧室的技术成熟度划分[J]. 航空工程进展,2010,1(1):85-89. doi: 10.3969/j.issn.1674-8190.2010.01.018

    ZHANG C,SUO J Q,JIN R S. Technology readiness level scale for low emission combustor of civil aircraft[J]. Advances in Aeronautical Science and Engineering,2010,1(1):85-89. doi: 10.3969/j.issn.1674-8190.2010.01.018
    [11] 王明瑞,王振华,韩冰,等. 航空发动机主燃烧室高温测试技术[J]. 航空发动机,2016,42(5):87-93.

    WANG M R,WANG Z H,HAN B,et al. High temperature measurement technology for main combustion chamber of aeroengine[J]. Aeroengine,2016,42(5):87-93.
    [12] REDDY D R, LEE C M. An overview of low-emission combustion research at NASA Glenn[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Con-ference and Exposition. 2016. doi: 10.1115/GT2016-56100
    [13] 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.

    LIN Y Z, XU Q H, LIU G E. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
    [14] MEIER U, FREITAG S, HEINZE J, et al. Characterization of lean burn module air blast pilot injector with laser techniques[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2013-94796
    [15] FYFFE D, MORAN J, KANNAIYAN K, et al. Effect of GTL-like jet fuel composition on GT engine altitude ignition performance: part I—combustor operability[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2012: 485-494. doi: 10.1115/GT2011-45487
    [16] 《航空发动机设计手册》总编委会. 航空发动机设计手册, 第9册, 主燃烧室[M]. 北京: 航空工业出版社, 2000.
    [17] YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Investigations of a staged fuel nozzle for aeroengines by multi-sector combustor test[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 961-973. doi: 10.1115/GT2010-23206
    [18] ADAM P W, NORRIS J W. Advanced jet engine combustor test facility[R]. NASA TN D-6030, 1970.
    [19] 张宝诚. 航空发动机试验和测试技术[M]. 北京: 北京航空航天大学出版社, 2005.
    [20] MAKIDA M, YAMADA H, SHIMODAIRA K, et al. Verifi-cation of low NOx performance of simple primary rich combustion approach by a newly established full annular combustor test facility[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009: 1105-1113. doi: 10.1115/GT2008-51419
    [21] PLANA V, VAUTHIER J S, CASTELOOT C. Design and optimization of a high temperature water cooled probe for gas analysis measurement on K11 combustion test rig[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Expositio. 2012: 29-38. doi: 10.1115/GT2011-45177
    [22] JIANG L Y, MANIPURATH S, BOURQUE G, et al. Flow-field investigation of two gas-sampling probes[C]//Proc of the Volume 1: Combustion and Fuels. 2006. doi: 10.1115/gt2006-90239
    [23] PENKO P F, FRASER B, ADKINS S E, et al. The high-pressure combustion facility at the NASA Glenn research center[C]//Proceedings of ASME Turbo Expo 2003, Collo-cated With the 2003 International Joint Power Generation Conference. 2009: 151-157. doi: 10.1115/GT2003-38013
    [24] DUBIEL D. Energy efficient engine combustor component performance program[R]. NASA CR-179533, 1986.
    [25] RUMIZEN M. ASTM D4054 Users' Guide[Z]. CAAFI Cer-tification-Qualification Team. 2013.
    [26] DOLL U,DUES M,BACCI T,et al. Aero-thermal flow characterization downstream of an NGV cascade by five-hole probe and filtered Rayleigh scattering measurements[J]. Experiments in Fluids,2018,59(10):1-10. doi: 10.1007/s00348-018-2607-z
    [27] EN'URGA INC. Setscan patternator[EB/OL]. [2021-12-13]. http://www.enurga.com.
    [28] PLANA V, HERVY F, SERRE J. Taking-off under tropical storm: a new steam and water injection feature in the K9 combustion test rig of DGA aero-engine testing[C]//Procee-dings of ASME 2011 Turbo Expo: Turbine Technical Con-ference and Exposition. 2012: 195-202. doi: 10.1115/GT2011-45178
    [29] MOSBACH T, SADANANDAN R, MEIER W, et al. Experimental analysis of altitude relight under realistic conditions using laser and high-speed video techniques[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 523-532. doi: 10.1115/GT2010-22625
    [30] MANIPURATH S S. Experimental study of superheated kerosene jet fuel sprays from a pressure-swirl nozzle[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 2017. doi: 10.1115/GT2017-64846
    [31] JEAN J, FOSSI A, DE CHAMPLAIN A, et al. Assessment of biofuels/jet A-1 blends to meet cold start and altitude relight requirements[C]//Proc of the Volume 4B: Combustion, Fuels and Emissions. 2017. doi: 10.1115/gt2017-64905
    [32] 杨文,张冬梅,曹文杰,等. 煤基喷气燃料在地面单管燃烧室内燃烧和排放特性研究[J]. 航空动力学报,2016,31(8):1874-1882.

    YANG W,ZHANG D M,CAO W J,et al. Studies on combustion and emission characteristics of coal-based jet fuel in ground individual can combustor[J]. Journal of Aerospace Power,2016,31(8):1874-1882.
    [33] 刘金林,马小森,赵鹏,等. 煤基合成油燃烧性能试验研究[J]. 航空发动机,2018,44(4):76-79.

    LIU J L,MA X S,ZHAO P,et al. Experimental study on combustion characteristics of coal-based synthetic oil[J]. Aeroengine,2018,44(4):76-79.
  • 加载中
图(9)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  154
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-02-21
  • 录用日期:  2022-03-01
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日