留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双加权POD的建筑物风压场重构

张昊 杨雄伟 李明水

张昊, 杨雄伟, 李明水. 基于双加权POD的建筑物风压场重构[J]. 实验流体力学, 2023, 37(6): 25-33 doi: 10.11729/syltlx20210146
引用本文: 张昊, 杨雄伟, 李明水. 基于双加权POD的建筑物风压场重构[J]. 实验流体力学, 2023, 37(6): 25-33 doi: 10.11729/syltlx20210146
ZHANG H, YANG X W, LI M S. A bi-weighted-POD and its application on wind pressure field[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 25-33 doi: 10.11729/syltlx20210146
Citation: ZHANG H, YANG X W, LI M S. A bi-weighted-POD and its application on wind pressure field[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 25-33 doi: 10.11729/syltlx20210146

基于双加权POD的建筑物风压场重构

doi: 10.11729/syltlx20210146
基金项目: 国家自然科学基金项目(51878580)
详细信息
    作者简介:

    张昊:(1994—),男,四川成都人,硕士研究生。研究方向:结构风工程。通信地址:四川省成都市金牛区二环路北一段111号西南交通大学九里校区土木工程学院(610031)。E-mail:Jetzhang_chengdu@163.com

    通讯作者:

    E-mail:lms_rcwe@126.com

  • 中图分类号: TU312+.1

A bi-weighted-POD and its application on wind pressure field

  • 摘要: 本征正交分解法(Proper Orthogonal Decomposition, POD)是一种基于2阶统计量的降阶方法,通过寻找一组正交单位基使得随机场在新坐标下能有更简洁的描述。本文提出了面积和均方根双加权POD,将其应用于建筑物风压场重构。从均方值角度对POD进行推导,证明POD是均方值意义上的最佳展开方式;在新的推导框架下对POD进行双加权优化,使之能较好地捕捉风压场中能量较低的相干结构;对5∶1矩形风压场进行重构,初步验证了双加权POD的可行性。结果表明:双加权POD可以较好地重构5∶1矩形风压场,重构风压场各空间点的重构精度一致,且能够基本还原所有空间点的时程和功率谱密度。与面积加权POD相比,双加权POD能够显著提高风压场低能量区域的降阶模型重构精度。
  • 图  1  风洞中的测压模型

    Figure  1.  Building model layout

    图  2  测压孔布置

    Figure  2.  Geometry of building model and pressure tap locations

    图  3  各测点平均风压系数和脉动风压系数

    Figure  3.  Distribution of mean and fluctuating pressure coefficients on building model

    图  4  修正前后的前6阶空间POD模态

    Figure  4.  1st – 6th spatial modes with and without spatial adjustments

    图  5  加权前后模态能量累积比

    Figure  5.  Cumulative proportion of mode energy with and without weighting

    图  6  前11阶模态驻点、分离点、再附点的POD重构

    Figure  6.  11–order ROM of Stationary point, separation point and reattachment point

    图  7  双加权和面积加权POD前11阶模态重构的整体效果

    Figure  7.  11–order ROM accuracy, with and without weighting

    图  8  双加权及面积加权POD时间模态的模态系数

    Figure  8.  Mode coefficients of temporal modes with and without weighting

  • [1] CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Current Science, 2000, 78(7): 808–817.
    [2] 陈兵, 龚春林, 仇理宽, 等. 基于频域本征正交分解的几何非线性动力学降阶[J]. 振动与冲击, 2020, 39(21): 163–172. doi: 10.13465/j.cnki.jvs.2020.21.022

    CHEN B, GONG C L, QIU L K, et al. Order reduction of geometrically nonlinear dynamic system based on POD in frequency domain[J]. Journal of Vibration and Shock, 2020, 39(21): 163–172. doi: 10.13465/j.cnki.jvs.2020.21.022
    [3] 谢裕清, 李琳. 基于本征正交分解的换流变压器极性反转电场降阶模型[J]. 中国电机工程学报, 2016, 36(23): 6544–6551. doi: 10.13334/j.0258-8013.pcsee.152399

    XIE Y Q, LI L. A reduced order model via proper orthogonal decomposition for polarity reverse electric fields in converter transformers[J]. Proceedings of the CSEE, 2016, 36(23): 6544–6551. doi: 10.13334/j.0258-8013.pcsee.152399
    [4] CAO Y H, ZHU J, LUO Z D, et al. Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition[J]. Computers & Mathematics with Applications, 2006, 52(8/9): 1373–1386. doi: 10.1016/j.camwa.2006.11.012
    [5] 刘章军, 刘增辉. 随机风场模拟的连续本征正交分解–随机函数方法[J]. 振动与冲击, 2018, 37(7): 32–37. doi: 10.13465/j.cnki.jvs.2018.07.005

    LIU Z J, LIU Z H. Simulation of a stochastic wind field based on a continuous proper orthogonal decomposition-random function approach[J]. Journal of Vibration and Shock, 2018, 37(7): 32–37. doi: 10.13465/j.cnki.jvs.2018.07.005
    [6] LIANG Y C, LEE H P, LIM S P, et al. Proper orthogonal decomposition and its applications — PartⅠ: Theory[J]. Journal of Sound and Vibration, 2002, 252(3): 527–544. doi: 10.1006/jsvi.2001.4041
    [7] JOLLIFFE I T. Principal component analysis: A beginner's guide —Ⅰ. Introduction and application[J]. Weather, 1990, 45(10): 375–382. doi: 10.1002/j.1477-8696.1990.tb05558.x
    [8] JOLLIFFE I T. Principal component analysis: A beginner's guide —Ⅱ. Pitfalls, myths and extensions[J]. Weather, 1993, 48(8): 246–253. doi: 10.1002/j.1477-8696.1993.tb05899.x
    [9] KARHUNEN J. Principal component neural networks — Theory and applications[J]. Pattern Analysis and Appli-cations, 1998, 1(1): 74–75. doi: 10.1007/BF01238029
    [10] FUKUNAGA K. Introduction to statistical pattern recogni-tion[M]. 2nd ed. Amsterdam: Elsevier Science Publishing Company Inc., 1990. doi: 10.1016/C2009-0-27872-X
    [11] KLEMA V, LAUB A. The singular value decomposition: its computation and some applications[J]. IEEE Transactions on Automatic Control, 1980, 25(2): 164–176. doi: 10.1109/TAC.1980.1102314
    [12] BIENKIEWICZ B, TAMURA Y, HAM H J, et al. Proper orthogonal decomposition and reconstruction of multi-channel roof pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995(54–55): 369–381. doi: 10.1016/0167-6105(94)00066-M
    [13] 朱颖. 基于POD的大跨屋盖结构风压场重构及预测[D]. 成都: 西南交通大学, 2019.

    ZHU Y. Wind pressure field reconstruction and prediction of large span roof structure based on POD[D]. Chengdu: Southwest Jiaotong University, 2019. doi: 10.27414/d.cnki.gxnju.2019.002692
    [14] TAMURA Y, SUGANUMA S, KIKUCHI H, et al. Proper orthogonal decomposition of random wind pressure field[J]. Journal of Fluids and Structures, 1999, 13(7/8): 1069–1095. doi: 10.1006/jfls.1999.0242
    [15] JEONG S H, BIENKIEWICZ B, HAM H J. Proper orthogonal decomposition of building wind pressure specified at non-uniformly distributed pressure taps[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 87(1): 1–14. doi: 10.1016/S0167-6105(00)00012-X
    [16] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5–28. doi: 10.1017/s0022112010001217
    [17] BRUNO L, SALVETTI M V, RICCIARDELLI F. Bench-mark on the Aerodynamics of a Rectangular 5∶1 Cylinder: an overview after the first four years of activity[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 87–106. doi: 10.1016/j.jweia.2014.01.005
    [18] LI M, LI Q S, SHI H Y. Aerodynamic pressures on a 5∶1 rectangular cylinder in sinusoidal streamwise oscillatory flows with non-zero mean velocities[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104440. doi: 10.1016/j.jweia.2020.104440
    [19] SHU Z R, LI Q S. An experimental investigation of surface pressures in separated and reattaching flows: effects of free-stream turbulence and leading edge geometry[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165: 58–66. doi: 10.1016/j.jweia.2017.03.004
  • 加载中
图(8)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  277
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2022-03-28
  • 录用日期:  2022-03-30
  • 网络出版日期:  2022-05-24
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日