留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双加权POD的建筑物风压场重构

张昊 杨雄伟 李明水

张昊,杨雄伟,李明水. 基于双加权POD的建筑物风压场重构[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210146
引用本文: 张昊,杨雄伟,李明水. 基于双加权POD的建筑物风压场重构[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210146
ZHANG H,YANG X W,LI M S. A bi-weighted-POD and its application on wind pressure field[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210146
Citation: ZHANG H,YANG X W,LI M S. A bi-weighted-POD and its application on wind pressure field[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210146

基于双加权POD的建筑物风压场重构

doi: 10.11729/syltlx20210146
基金项目: 国家自然科学基金(51878580)
详细信息
    作者简介:

    张昊:(1994—),男,四川成都人,硕士研究生。研究方向:结构风工程。通信地址:四川省成都市金牛区二环路北一段111号西南交通大学九里校区土木工程学院(610031)。E-mail:Jetzhang_chengdu@163.com

    通讯作者:

    E-mail:lms_rcwe@126.com

  • 中图分类号: TU312+.1

A bi-weighted-POD and its application on wind pressure field

  • 摘要: 本征正交分解法(Proper Orthogonal Decomposition,POD)是一种基于2阶统计量的降阶方法,它通过寻找一组正交单位基使得随机场在新坐标下能有更加简洁的描述。本文提出了面积和均方根双加权POD,并将其应用于建筑物风压场重构。首先,从均方值角度对POD进行推导,证明POD是均方值意义上的最佳展开方式;然后,在新的推导框架下对POD进行双加权优化,使之能够较好地捕捉风压场中能量较低的相干结构;最后,对5∶1矩形风压场进行重构,初步验证了双加权POD的可行性。结果表明:双加权POD可以较好地重构5∶1矩形风压场,重构风压场在各空间点的重构精度一致,且能够基本还原所有空间点的时程与功率谱密度。与面积加权的POD相比,双加权POD能够显著提升风压场低能量区域的降阶模型重构精度。
  • 图  1  风洞中的测压模型

    Figure  1.  Building model layout

    图  2  测压孔布置

    Figure  2.  Geometry of building model and pressure tap locations

    图  3  各测点平均风压系数与脉动风压系数

    Figure  3.  Distribution of mean and fluctuating pressure coefficients on building model

    图  4  修正前后的前6阶空间POD模态

    Figure  4.  1st – 6th spatial modes with and without spatial adjustments

    图  5  加权前后模态能量累积比

    Figure  5.  Cumulative proportion of mode energy with and without weighting

    图  6  前11阶模态驻点、分离点、再附点的POD重构

    Figure  6.  11-order ROM of Stationary point, separation point and reattachment point

    图  7  双加权与面积加权POD前11阶模态重构的整体效果

    Figure  7.  11-order ROM accuracy, with and without weighting

    图  8  双加权及面积加权POD时间模态的模态系数

    Figure  8.  Mode coefficients of temporal modes with and without weighting

  • [1] CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Current Science,2000,78(7):808-817.
    [2] 陈兵,龚春林,仇理宽,等. 基于频域本征正交分解的几何非线性动力学降阶[J]. 振动与冲击,2020,39(21):163-172. doi: 10.13465/j.cnki.jvs.2020.21.022

    CHEN B,GONG C L,QIU L K,et al. Order reduction of geometrically nonlinear dynamic system based on POD in frequency domain[J]. Journal of Vibration and Shock,2020,39(21):163-172. doi: 10.13465/j.cnki.jvs.2020.21.022
    [3] 谢裕清,李琳. 基于本征正交分解的换流变压器极性反转电场降阶模型[J]. 中国电机工程学报,2016,36(23):6544-6551. doi: 10.13334/j.0258-8013.pcsee.152399

    XIE Y Q,LI L. A reduced order model via proper orthogonal decomposition for polarity reverse electric fields in converter transformers[J]. Proceedings of the CSEE,2016,36(23):6544-6551. doi: 10.13334/j.0258-8013.pcsee.152399
    [4] CAO Y H,ZHU J,LUO Z D,et al. Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition[J]. Computers & Mathematics with Applications,2006,52(8-9):1373-1386. doi: 10.1016/j.camwa.2006.11.012
    [5] 刘章军,刘增辉. 随机风场模拟的连续本征正交分解–随机函数方法[J]. 振动与冲击,2018,37(7):32-37. doi: 10.13465/j.cnki.jvs.2018.07.005

    LIU Z J,LIU Z H. Simulation of a stochastic wind field based on a continuous proper orthogonal decomposition-random function approach[J]. Journal of Vibration and Shock,2018,37(7):32-37. doi: 10.13465/j.cnki.jvs.2018.07.005
    [6] LIANG Y C,LEE H P,LIM S P,et al. Proper orthogonal decomposition and its applications — Part Ⅰ: Theory[J]. Journal of Sound and Vibration,2002,252(3):527-544. doi: 10.1006/jsvi.2001.4041
    [7] JOLLIFFE I T. Principal component analysis: A beginner's guide — I. Introduction and application[J]. Weather,1990,45(10):375-382. doi: 10.1002/j.1477-8696.1990.tb05558.x
    [8] JOLLIFFE I T. Principal component analysis: A beginner's guide — II. Pitfalls, myths and extensions[J]. Weather,1993,48(8):246-253. doi: 10.1002/j.1477-8696.1993.tb05899.x
    [9] KARHUNEN J. Principal component neural networks — Theory and applications[J]. Pattern Analysis and Applications,1998,1(1):74-75. doi: 10.1007/BF01238029
    [10] FUKUNAGA K. Introduction to statistical pattern recogni-tion[M]. 2nd ed. Amsterdam: Elsevier Science Publishing Company Inc, 1990. doi: 10.1016/C2009-0-27872-X
    [11] KLEMA V,LAUB A. The singular value decomposition: its computation and some applications[J]. IEEE Transactions on Automatic Control,1980,25(2):164-176. doi: 10.1109/TAC.1980.1102314
    [12] BIENKIEWICZ B,TAMURA Y,HAM H J,et al. Proper orthogonal decomposition and reconstruction of multi-channel roof pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:369-381. doi: 10.1016/0167-6105(94)00066-M
    [13] 朱颖. 基于POD的大跨屋盖结构风压场重构及预测[D]. 成都: 西南交通大学, 2019.

    ZHU Y. Wind pressure field reconstruction and prediction of large span roof structure based on POD[D]. Chengdu: Southwest Jiaotong University, 2019. doi: 10.27414/d.cnki.gxnju.2019.002692
    [14] TAMURA Y,SUGANUMA S,KIKUCHI H,et al. Proper orthogonal decomposition of random wind pressure field[J]. Journal of Fluids and Structures,1999,13(7-8):1069-1095. doi: 10.1006/jfls.1999.0242
    [15] JEONG S H,BIENKIEWICZ B,HAM H J. Proper orthogonal decomposition of building wind pressure specified at non-uniformly distributed pressure taps[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,87(1):1-14. doi: 10.1016/S0167-6105(00)00012-X
    [16] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656:5-28. doi: 10.1017/s0022112010001217
    [17] BRUNO L,SALVETTI M V,RICCIARDELLI F. Bench-mark on the Aerodynamics of a Rectangular 5: 1 Cylinder: an overview after the first four years of activity[J]. Journal of Wind Engineering and Industrial Aerodynamics,2014,126:87-106. doi: 10.1016/j.jweia.2014.01.005
    [18] LI M,LI Q S,SHI H Y. Aerodynamic pressures on a 5: 1 rectangular cylinder in sinusoidal streamwise oscillatory flows with non-zero mean velocities[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,208:104440. doi: 10.1016/j.jweia.2020.104440
    [19] SHU Z R,LI Q S. An experimental investigation of surface pressures in separated and reattaching flows: effects of free-stream turbulence and leading edge geometry[J]. Journal of Wind Engineering and Industrial Aerodynamics,2017,165:58-66. doi: 10.1016/j.jweia.2017.03.004
  • 加载中
图(8)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  217
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2022-03-28
  • 录用日期:  2022-03-30
  • 网络出版日期:  2022-05-24

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日