留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚焦激光差分干涉法测量超/高超声速流动的进展

熊有德 余涛 薛涛 吴杰

熊有德,余涛,薛涛,等. 聚焦激光差分干涉法测量超/高超声速流动的进展[J]. 实验流体力学,2022,36(2):9-20 doi: 10.11729/syltlx20210126
引用本文: 熊有德,余涛,薛涛,等. 聚焦激光差分干涉法测量超/高超声速流动的进展[J]. 实验流体力学,2022,36(2):9-20 doi: 10.11729/syltlx20210126
XIONG Y D,YU T,XUE T,et al. Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):9-20. doi: 10.11729/syltlx20210126
Citation: XIONG Y D,YU T,XUE T,et al. Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):9-20. doi: 10.11729/syltlx20210126

聚焦激光差分干涉法测量超/高超声速流动的进展

doi: 10.11729/syltlx20210126
基金项目: 国家数值风洞(2018-ZT1A03);国家自然科学基金(92052301);中央高校基本科研业务费专项资金(2019kfyXKJC001)
详细信息
    作者简介:

    熊有德:(1993—),男,河南信阳人,博士研究生。研究方向:高超声速实验测量。通信地址:湖北省武汉市洪山区关山街道珞喻路1037号华中科技大学航空航天学院(430074)。E-mail:xiongyd@hust.edu.cn

    通讯作者:

    E-mail:jiewu@hust.edu.cn

  • 中图分类号: V211.74

Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field

  • 摘要: 聚焦激光差分干涉法(Focused Laser Differential Interferometry,FLDI)作为一种非介入式高时空分辨率的测试手段,适用于高超声速风洞等极端实验环境。从典型FLDI的光路设计出发,介绍了FLDI技术的测量原理以及空间滤波特性;梳理了近年来国内外研究者为满足不同气动问题的研究需求,对典型FLDI技术做出的一系列改进;介绍了FDLI技术在超声速以及高超声速流场(包括高超声速自由流来流扰动、高超声速边界层不稳定波与转捩以及超声速射流噪声辐射等)测量中的应用。本综述展现了FLDI技术在超声速以及高超声速流场测量中的潜力,为后续开展FLDI技术的改进及相关高超声速流场精密测量提供参考。
  • 图  1  FLDI系统的组成

    Figure  1.  Composition of FLDI system

    图  2  观测区双焦点示意

    Figure  2.  Schematic of the dual focus in the observation region

    图  3  光束分离引起的空间滤波

    Figure  3.  Spatial filtering caused by beam separation

    图  4  光强高斯分布引起的空间滤波

    Figure  4.  Spatial filtering caused by Gaussian distribution of light intensity

    图  5  切片归一化离散网格

    Figure  5.  Normalized discrete grid of slice

    图  6  FLDI敏感性测试结果[21]

    Figure  6.  Result of the FLDI sensitivity test[21]

    图  7  轴对称氦气射流的折射率均值场[22]

    Figure  7.  Average refractive index field of the axisymmetric He jet[22]

    图  8  FLDI响应的实验(蓝色)及数值计算(红色)结果对比[22]

    Figure  8.  Comparison of experimental (blue) and simulated (red) FLDI responses[22]

    图  9  FLDI动态响应[22]

    Figure  9.  Dynamic response of FLDI[22]

    图  10  CFLDI系统组成[25]

    Figure  10.  Schematic of the CFLDI setup[25]

    图  11  FLDI和CFLDI光束轮廓[24]

    Figure  11.  Beam profiles of FLDI and CFLDI systems[24]

    图  12  双测点FLDI光路示意[26]

    Figure  12.  Schematic of the two-point FLDI setup[26]

    图  13  LA-FLDI光束轮廓[32]

    Figure  13.  Beam profiles approaching the LA-FLDI system focal region[32]

    图  14  LA-FLDI系统组成[32]

    Figure  14.  LA-FLDI setup[32]

    图  15  实验数据与FLDI数值模拟结果对比[34]

    Figure  15.  Comparison between experimental data and FLDI simula-tion[34]

    图  16  FLDI数值模拟结果及对应的CFD得到的各发展阶段的瞬时密度场[34]

    Figure  16.  FLDI simulation and instantaneous flow field shown at several stages of development[34]

    图  17  安装屏蔽罩前后的归一化相位差功率谱[17]

    Figure  17.  Comparison of normalized phase difference spectra for runs with and without the beam shrouds installed[17]

    图  18  FLDI与皮托探头联合测量结果[17]

    Figure  18.  Combined measurement result of FLDI and Pitot probe[17]

    图  19  喷嘴下游不同截面脉动归一化RMS[39]

    Figure  19.  The normalized RMS of the pulsation of different cross-sections downstream of the nozzle[39]

    图  20  热线风速仪与FLDI频谱比较[39]

    Figure  20.  Comparison of hot wire anemometer and FLDI spectrum[39]

    图  21  归一化边界层密度脉动谱[24]

    Figure  21.  Normalized density fluctuations spectra inside the boundary layer[24]

    图  22  FLDI与PCB压力传感器测量裙锥表面不稳定波时间序列信号比较[14]

    Figure  22.  Time transient of FLDI and PCB flush mounted on the cone model[14]

    图  23  FLDI与PCB压力传感器测量尖锥表面不稳定波频域信号比较[14]

    Figure  23.  Power spectral density comparison of FLDI and PCB result of instability modes[14]

    图  24  FLDI测量尖锥模型边界层不稳定波法向频谱特征[14]

    Figure  24.  Power spectral density of FLDI measurement across of hypersonic boundary-layer on sharp cone model[14]

    图  25  双测点FLDI和皮托测得的速度剖面对比[38]

    Figure  25.  Comparison of velocity profiles measured by dual points FLDI and Pitot[38]

    图  26  CFLDI测得的平板第二模态不稳定波[29]

    Figure  26.  The second-mode instability wave of the flat plate measured by CFLDI[29]

    图  27  来流马赫为1.5的超声速射流平台

    Figure  27.  Mach 1.5 supersonic jet platform

    图  28  FLDI和麦克风测得的频谱对比

    Figure  28.  Comparison of spectra measured by FLDI and microphone

  • [1] FEDOROV A. Transition and stability of high-speed bound-ary layers[J]. Annual Review of Fluid Mechanics,2011,43(1):79-95. doi: 10.1146/annurev-fluid-122109-160750
    [2] SCHNEIDER S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences,2004,40(1-2):1-50. doi: 10.1016/j.paerosci.2003.11.001
    [3] 陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q,TU G H,ZHANG Y F,et al. Hypersnonic boundary layer transition: what we know,where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [4] BERTIN J J,CUMMINGS R M. Fifty years of hypersonics: where we've been,where we're going[J]. Progress in Aero-space Sciences,2003,39(6-7):511-536. doi: 10.1016/S0376-0421(03)00079-4
    [5] BERTIN J J,CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics,2006,38(1):129-157. doi: 10.1146/annurev.fluid.38.050304.092041
    [6] MORTENSEN C H,ZHONG X L. Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone[J]. AIAA Journal,2016,54(3):980-998. doi: 10.2514/1.j054404
    [7] 吴正园,莫凡,高振勋,等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报,2020,38(6):1111-1119,1128. doi: 10.7638/kqdlxxb-2020.0132

    WU Z Y,MO F,GAO Z X,et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica,2020,38(6):1111-1119,1128. doi: 10.7638/kqdlxxb-2020.0132
    [8] BONNET J P,GRÉSILLON D,TARAN J P. Nonintrusive measurements for high-speed,supersonic,and hypersonic flows[J]. Annual Review of Fluid Mechanics,1998,30(1):231-273. doi: 10.1146/annurev.fluid.30.1.231
    [9] MILES R B. Optical diagnostics for high-speed flows[J]. Progress in Aerospace Sciences,2015,72:30-36. doi: 10.1016/j.paerosci.2014.09.007
    [10] DANEHY P M, WEISBERGER J, JOHANSEN C, et al. Non-intrusive measurement techniques for flow characteri-zation of hypersonic wind tunnels[C]//Proc of the Flow Characterization and Modeling of Hypersonic Wind Tunnels(NATO Science and Technology Organization Lecture Series STO-AVT 325). 2018.
    [11] SMEETS G. Laser interferometer for high sensitivity measurements on transient phase objects[J]. IEEE Transac-tions on Aerospace and Electronic Systems,1972,AES-8(2):186-190. doi: 10.1109/TAES.1972.309488
    [12] SMEETS G. Flow diagnostics by laser interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems,1977,AES-13(2):82-90. doi: 10.1109/taes.1977.308441
    [13] PARZIALE N J,SHEPHERD J E,HORNUNG H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal,2012,51(3):750-754. doi: 10.2514/1.J052013
    [14] XIONG Y D,YU T,LIN L Q,et al. Nonlinear instability characterization of hypersonic laminar boundary layer[J]. AIAA Journal,2020,58(12):5254-5263. doi: 10.2514/1.J059263
    [15] YU T,XIONG Y D,ZHAO J Q,et al. Application of focused laser differential interferometer to hypersonic boundary-layer instability study[J]. Chinese Journal of Aeronautics,2021,34(5):17-26. doi: 10.1016/j.cja.2020.10.019
    [16] CHOU A, LEIDY A, KING R A, et al. Measurements of freestream fluctuations in the NASA langley 20-inch Mach 6 tunnel[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi:10.2514/6.2018-3073
    [17] BIRCH B,BUTTSWORTH D,ZANDER F. Measurements of freestream density fluctuations in a hypersonic wind tunnel[J]. Experiments in Fluids,2020,61(7):158. doi: 10.1007/s00348-020-02992-w
    [18] FULGHUM M R. Turbulence measurements in high speed wind tunnels using focused laser differential interferometry[D]. Pennsylvania: The Pennsylvania State University, 2014.
    [19] SCHMIDT B E,SHEPHERD J E. Analysis of focused laser differential interferometry[J]. Applied Optics,2015,54(28):8459-8472. doi: 10.1364/AO.54.008459
    [20] PARZIALE N, SHEPHERD J, HORNUNG H. Reflected shock tunnel noise measurement by focused differential interferometry[C]//Proc of the 42nd AIAA Fluid Dynamics Conference and Exhibit. 2012. doi: 10.2514/6.2012-3261
    [21] 余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75. doi: 10.11729/syltlx20190076

    YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75. doi: 10.11729/syltlx20190076
    [22] LAWSON J M,NEET M C,GROSSMAN I J,et al. Static and dynamic characterization of a focused laser differential interferometer[J]. Experiments in Fluids,2020,61(8):187. doi: 10.1007/s00348-020-03013-6
    [23] HOUPT A W, LEONOV S B. Focused laser differential interferometer for supersonic boundary layer measurements on flat plate geometries[C]//Proc of the 2018 Plasmadyna-mics and Lasers Conference. 2018. doi: 10.2514/6.2018-3434
    [24] HOPKINS K J,PORAT H,MCINTYRE T J,et al. Measurements and analysis of hypersonic tripped boundary layer turbulence[J]. Experiments in Fluids,2021,62(8):164. doi: 10.1007/s00348-021-03254-z
    [25] HOUPT A,LEONOV S. Cylindrical focused laser diffe-rential interferometer[J]. AIAA Journal,2021,59(4):1142-1150. doi: 10.2514/1.j059750
    [26] WEISBERGER J, BATHEL B F, JONES S B, et al. Two-point focused laser differential interferometry second-mode measurements at Mach 6[C]// Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-2903
    [27] BATHEL B F,WEISBERGER J M,HERRING G C,et al. Two-point, parallel-beam focused laser differential interfero-metry with a Nomarski prism[J]. Applied Optics,2020,59(2):244-252. doi: 10.1364/ao.59.000244
    [28] JEWELL J S, HAMEED A, PARZIALE N J, et al. Disturbance speed measurements in a circular jet via double focused laser differential interferometry[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-2293
    [29] WEISBERGER J M,BATHEL B F,HERRING G C,et al. Multi-point line focused laser differential interferometer for high-speed flow fluctuation measurements[J]. Applied Optics,2020,59(35):11180-11195. doi: 10.1364/ao.411006
    [30] WEISBERGER J M, BATHEL B F, HERRING G C, et al. Two-line focused laser differential interferometry of a flat plate boundary layer at Mach 6[C]//Proc of the AIAA Scitech 2021 Forum. 2021. doi: 10.2514/6.2021-0601
    [31] HAMEED A, PARZIALE N J, PAQUIN L A, et al. Spectral analysis of a hypersonic boundary layer on a right, circular cone [C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-0362
    [32] GRAGSTON M,PRICE T,DAVENPORT K,et al. Linear array focused-laser differential interferometry for single-shot multi-point flow disturbance measurements[J]. Optics Letters,2020,46(1):154-157. doi: 10.1364/ol.412495
    [33] GRAGSTON M,SIDDIQUI F,SCHMISSEUR J D. Detec-tion of second-mode instabilities on a flared cone in Mach 6 quiet flow with linear array focused laser differential interferometry[J]. Experiments in Fluids,2021,62(4):81. doi: 10.1007/s00348-021-03188-6
    [34] LAWSON J M,AUSTIN J M. Focused laser differential inter-ferometer response to shock waves[J]. Measurement Science and Technology,2021,32(5):055203. doi: 10.1088/1361-6501/abdbd3
    [35] SCHNEIDER S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets,2008,45(4):641-664. doi: 10.2514/1.34489
    [36] PARZIALE N. Slender-body hypervelocity boundary-layer instability[D]. California: California Institute of Technology, 2013.
    [37] PARZIALE N J,SHEPHERD J E,HORNUNG H G. Free-stream density perturbations in a reflected-shock tunnel[J]. Experiments in Fluids,2014,55(2):1665. doi: 10.1007/s00348-014-1665-0
    [38] CERUZZI A, MCMANAMEN B, CADOU C P. Demon-stration of two-point focused laser differential interferometry(2pFLDI)in a Mach 18 flow[C]//Proc of the AIAA Scitech 2021 Forum. 2021. doi: 10.2514/6.2021-0983
    [39] SETTLES G S,FULGHUM M R. The focusing laser differential interferometer, an instrument for localized turbu-lence measurements in refractive flows[J]. Journal of Fluids Engineering,2016,138(10):101402. doi: 10.1115/1.4033960
    [40] CERUZZI A, CALLIS B, WEBER D, et al. Application of focused laser differential interferometry(FLDI) in a super-sonic boundary layer[C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-1973
    [41] PRICE T J,GRAGSTON M,SCHMISSEUR J D,et al. Measurement of supersonic jet screech with focused laser differential interferometry[J]. Applied Optics,2020,59(28):8902-8908. doi: 10.1364/ao.402011
  • 加载中
图(28)
计量
  • 文章访问数:  2448
  • HTML全文浏览量:  471
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-11-03
  • 录用日期:  2021-11-18
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日