留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高时空分辨率磁纳米测温前沿与进展

易文通 朱旖雯 刘文中

易文通,朱旖雯,刘文中. 超高时空分辨率磁纳米测温前沿与进展[J]. 实验流体力学,2022,36(2):1-8 doi: 10.11729/syltlx20210107
引用本文: 易文通,朱旖雯,刘文中. 超高时空分辨率磁纳米测温前沿与进展[J]. 实验流体力学,2022,36(2):1-8 doi: 10.11729/syltlx20210107
YI W T,ZHU Y W,LIU W Z. Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):1-8. doi: 10.11729/syltlx20210107
Citation: YI W T,ZHU Y W,LIU W Z. Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):1-8. doi: 10.11729/syltlx20210107

超高时空分辨率磁纳米测温前沿与进展

doi: 10.11729/syltlx20210107
基金项目: 国家自然科学基金(61973132);湖北省重点研发计划(2020BHB020)
详细信息
    作者简介:

    易文通:(1996—),男,湖北孝感人,博士研究生。研究方向:磁性薄膜成像,磁纳米温度成像。通信地址:湖北省武汉市洪山区珞喻路1037号华中科技大学人工智能与自动化学院(430074)。E-mail:ywt@hust.edu.cn

    通讯作者:

    E-mail:lwz7410@hust.edu.cn

  • 中图分类号: TK311

Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement

  • 摘要: 特殊条件下的远程、快速温度测量的前沿需求,对经典温度传感技术提出了挑战。磁学原理测温方法在这些领域颇具潜力,磁纳米粒子具备显著高效的温度–磁场转换效应及纳秒尺度的响应时间,可实现远程、高精度、快速的温度测量。本文综述了目前国内外磁纳米测温技术的发展现状,具体包括几种不同的磁纳米温度测量物理模型及仿真分析方法,以及相应的温度信息提取方法与测量系统设计。基于磁纳米粒子的远程温度测量方法主要原理是测量磁化率或磁化强度信号,通过Langevin磁学模型获取温度信息。多个原型实验证明了磁纳米测温技术在远程或超快速等约束条件下应用的可行性。磁纳米温度计为大功率芯片的结温测量、瞬态温度测量、穿透金属的远程温度测量以及高超声速风洞转捩点下游温度成像等极端条件下的温度测量提供了一种新的测量工具。
  • 图  1  MNP的磁化响应曲线[16]

    Figure  1.  Magnetization curves of magnetic nanoparticles at different temperatures[16]

    图  2  MNP交流磁化强度的温度变化曲线与磁化强度频谱[16]

    Figure  2.  The AC magnetization of magnetic nanoparticles at different temperatures and the frequency spectrum of magnetization[16]

    图  3  三角波激励原理框图[21]

    Figure  3.  Block diagram of triangle wave excitation[21]

    图  4  MNP布朗弛豫时间随温度变化曲线[21]

    Figure  4.  Temperature variation curve of MNP Brownian relaxation time[21]

    图  5  MNP水模样品的核磁共振$\tau_2 $加权温度成像[25]

    Figure  5.  Nuclear magnetic resonance $ \tau_2 $-weighted temperature imag-ing of water model samples of magnetic nanoparticles[25]

    图  6  LED封装图[28]

    Figure  6.  LED package drawing[28]

    图  7  不同激励下LED结温层和荧光层温度变化[28]

    Figure  7.  Changes in LED junction temperature and phosphor layer temperature under different excitations[28]

    图  8  磁纳米瞬态温度测量[29-30]

    Figure  8.  Magnetic nanometer transient temperature measurement[29-30]

    图  9  基于电感的磁纳米测温方法[31]

    Figure  9.  Magnetic nanometer temperature measurement method based on inductance[31]

  • [1] SOULEN R J,RUSBY R L,VECHTEN D. A self-calibrating rhodium-iron resistive SQUID thermometer for the range below 0.5 K[J]. Journal of Low Temperature Physics,1980,40(5-6):553-569. doi: 10.1007/BF00119524
    [2] KIRSTE A,ENGERT J. A SQUID-based primary noise ther-mometer for low-temperature metrology[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2016,374(2064):20150050. doi: 10.1098/rsta.2015.0050
    [3] GAO Y H,BANDO Y. Carbon nanothermometer containing gallium[J]. Nature,2002,415:599. doi: 10.1038/415599a
    [4] 谢志刚,韩立,凌勇,等. 用扫描热显微镜研究材料表面微区热导分布[J]. 电子显微学报,2000,19(5):717-722. doi: 10.3969/j.issn.1000-6281.2000.05.009

    XIE Z G,HAN L,LING Y,et al. Mapping local thermal conductivity by scanning thermal microscopy[J]. Journal of Chinese Electron Microscopy Society,2000,19(5):717-722. doi: 10.3969/j.issn.1000-6281.2000.05.009
    [5] ZHOU J J,DEL ROSAL B,JAQUE D,et al. Advances and challenges for fluorescence nanothermometry[J]. Nature Methods,2020,17(10):967-980. doi: 10.1038/s41592-020-0957-y
    [6] JAQUE D,DEL ROSAL B,RODRÍGUEZ E M,et al. Fluorescent nanothermometers for intracellular thermal sensing[J]. Nanomedicine(London, England),2014,9(7):1047-1062. doi: 10.2217/nnm.14.59
    [7] GAO H,KAM C,CHOU T Y,et al. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy[J]. Nanoscale Horizons,2020,5(3):488-494. doi: 10.1039/c9nh00693a
    [8] LIU C F,LEONG W H,XIA K W,et al. Ultra-sensitive hybrid diamond nanothermometer[J]. National Science Review,2020,8(5):nwaa194. doi: 10.1093/nsr/nwaa194
    [9] WEAVER J B,RAUWERDINK A M,HANSEN E W. Magnetic nanoparticle temperature estimation[J]. Medical Physics,2009,36(5):1822-1829. doi: 10.1118/1.3106342
    [10] RAUWERDINK A M,HANSEN E W,WEAVER J B. Nanoparticle temperature estimation in combined ac and dc magnetic fields[J]. Physics in Medicine and Biology,2009,54(19):L51-L55. doi: 10.1088/0031-9155/54/19/L01
    [11] 余巧灵. 基于磁性纳米粒子的燃料电池温度检测[D]. 武汉: 华中科技大学, 2018.

    YU Q L. Temperature measurement inside fuel cell based on magnetic nanoparticles[D]. Wuhan: Huazhong University of Science and Technology, 2018. doi: 10.7666/d.D01545055
    [12] KAISER R,MISKOLCZY G. Magnetic properties of stable dispersions of subdomain magnetite particles[J]. Journal of Applied Physics,1970,41(3):1064-1072. doi: 10.1063/1.1658812
    [13] LAK A,LUDWIG F,SCHOLTYSSEK J M,et al. Size distribution and magnetization optimization of single-core iron oxide nanoparticles by exploiting design of experiment methodology[J]. IEEE Transactions on Magnetics,2013,49(1):201-207. doi: 10.1109/TMAG.2012.2224325
    [14] LUDWIG F,EBERBECK D,LÖWA N,et al. Characteri-zation of magnetic nanoparticle systems with respect to their magnetic particle imaging performance[J]. Biomedizinische Technik Biomedical Engineering,2013,58(6):535-545. doi: 10.1515/bmt-2013-0013
    [15] LIU W Z,ZHOU M,KONG L. Estimation of the size distri-bution of magnetic nanoparticles using modified magnetiza-tion curves[J]. Measurement Science and Technology,2009,20(12):125802. doi: 10.1088/0957-0233/20/12/125802
    [16] 钟景. 磁纳米温度测量理论与方法研究[D]. 武汉: 华中科技大学, 2014.

    ZHONG J. Study of theory and method for temperature probing using magnetic nanoparticles[D]. Wuhan: Huazhong University of Science and Technology, 2014.doi: 10.7666/d.D609033
    [17] ZHONG J,LIU W Z,DU Z Z,et al. A noninvasive, remote and precise method for temperature and concentration esti-mation using magnetic nanoparticles[J]. Nanotechnology,2012,23(7):075703. doi: 10.1088/0957-4484/23/7/075703
    [18] ZHONG J,LIU W Z,KONG L,et al. A new approach for highly accurate, remote temperature probing using magnetic nanoparticles[J]. Scientific Reports,2014,4:6338. doi: 10.1038/srep06338
    [19] 王丹丹. 磁纳米温度计关键技术研究[D]. 郑州: 郑州轻工业大学, 2021.

    WANG D D. Research on key technologies of magnetic nano-particles thermometer[D]. Zhengzhou: Zhengzhou University of Light Industry, 2021.doi: 10.27469/d.cnki.gzzqc.2021.000016
    [20] ZHONG J,LIU W Z,JIANG L,et al. Real-time magnetic nanothermometry: the use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields[J]. The Review of Scientific Instruments,2014,85(9):094905. doi: 10.1063/1.4896121
    [21] 何乐. 时变磁场激励的磁纳米温度测量方法研究[D]. 武汉: 华中科技大学, 2016.

    HE L. Study of magnetic nanothemometer excited by time-varying magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2016. doi: 10.7666/d.D01077937
    [22] GUO S L,LIU J,DU Z Z,et al. Improving magnetic nanothermometry accuracy through mixing-frequency excitation[J]. The Review of Scientific Instruments,2021,92(2):024901. doi: 10.1063/5.0038138
    [23] 孙毅. 磁纳米温度信息测量关键技术研究[D]. 郑州: 郑州轻工业大学, 2020.

    SUN Y. Research on key technologies of temperature measurement using magnetic nanoparticles[D]. Zhengzhou: Zhengzhou University of Light Industry, 2020. doi: 10.27469/d.cnki.gzzqc.2020.000021
    [24] BROWN R W, CHENG Y-C N, MARK HAACKE E, et al. Magnetic resonance imaging: physical principles and sequence design[M]. Hoboken, New Jersey: John Wiley & Sons, 2014. doi: 10.1002/9781118633953
    [25] ZHANG Y P,GUO S L,ZHANG P,et al. Iron oxide magnetic nanoparticles based low-field MR thermometry[J]. Nanotechnology,2020,31(34):345101. doi: 10.1088/1361-6528/ab932b
    [26] NARENDRAN N,GU Y. Life of LED-based white light sources[J]. Journal of Display Technology,2005,1(1):167-171. doi: 10.1109/JDT.2005.852510
    [27] 余彬海,王垚浩. 结温与热阻制约大功率LED发展[J]. 发光学报,2005,26(6):761-766. doi: 10.3321/j.issn:1000-7032.2005.06.014

    YU B H,WANG Y H. Junction temperature and thermal resistance restrict the developing of high-power LED[J]. Chinese Journal of Luminescence,2005,26(6):761-766. doi: 10.3321/j.issn:1000-7032.2005.06.014
    [28] 杜中州. 磁纳米温度测量关键技术及其应用研究[D]. 武汉: 华中科技大学, 2015.

    DU Z Z. Research on key technologies of temperature measurement using magnetic nanoparticles and its application[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [29] XU W B,LIU W Z,ZHANG P. Nanosecond-resolved temperature measurements using magnetic nanoparticles[J]. Review of Scientific Instruments,2016,87(5):054902. doi: 10.1063/1.4948737
    [30] XU W B, LIU W Z, ZHANG P, et al. Magnetic nanoparticle temperature estimation: the improvement of measurement speed[C]//Proc of the 2015 5th International Workshop on Magnetic Particle Imaging(IWMPI). 2015. doi: 10.1109/IWMPI.2015.7107080
    [31] GUO S L,LIU W Z,CHENG J J. A penetrating remote temperature measurement device based on magnetic nanoparticles for measuring the internal temperatures of metal containers[J]. Measurement Science and Technology,2019,30(5):055101. doi: 10.1088/1361-6501/aaff3f
  • 加载中
图(9)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  23
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 录用日期:  2021-12-09
  • 修回日期:  2021-11-28
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日