留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑动放电等离子体控制细长体头部背风区非对称涡实验研究

金元中 郑博睿 喻明浩 刘园鹏 张倩 孙正中 于涛

金元中,郑博睿,喻明浩,等. 滑动放电等离子体控制细长体头部背风区非对称涡实验研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210101
引用本文: 金元中,郑博睿,喻明浩,等. 滑动放电等离子体控制细长体头部背风区非对称涡实验研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210101
JIN Y Z,ZHENG B R,YU M H,et al. Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210101
Citation: JIN Y Z,ZHENG B R,YU M H,et al. Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210101

滑动放电等离子体控制细长体头部背风区非对称涡实验研究

doi: 10.11729/syltlx20210101
基金项目: 国家自然科学基金(51607188,61971345,12175177);国防科技重点实验室基金项目(614220120030810)
详细信息
    作者简介:

    金元中:(1997—),男,甘肃兰州人,硕士研究生。研究方向:等离子体流动控制,湍流边界层减阻。通信地址:陕西省西安市碑林区金花南路五号西安理工大学金花校区(710048)。E-mail:2200221237@stu.xaut.edu.cn

    通讯作者:

    E-mail:narcker@xaut.edu.cn,ymh@xaut.edu.cn

  • 中图分类号: V211.7

Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation

  • 摘要: 飞行器在大迎角飞行状态下,细长体头部背风区流场演变复杂,会出现非对称旋涡,产生随机侧向力,对飞行器的机动性和敏捷性影响很大。本文针对细长体大迎角非对称涡控制问题,采用顺流向布局的滑动放电等离子体激励器,结合测压和粒子图像测速(PIV)等手段,对细长体模型开展风洞实验研究。研究结果表明:激励电压10 kV是流动控制开始生效的阈值电压;当来流速度10 m/s(雷诺数0.8×105)、迎角45°时(激励电压16 kV,归一化脉冲频率1.96),获得最佳流动控制效果,侧向力系数最高可降低83.48%;随着来流速度继续增大,流动控制效果逐渐减弱,预测在来流速度26 m/s时将完全失效。
  • 图  1  低速闭环回流式风洞[25]

    Figure  1.  Low-speed closed return wind tunnel[25]

    图  2  细长体实验模型及模型示意图[25]

    Figure  2.  Schematic diagram of slender body[25]

    图  3  PIV实验布局示意图

    Figure  3.  Schematic diagram of PIV experiment layout

    图  4  滑动放电等离子体激励器示意图及实物图

    Figure  4.  Schematic diagram and image of sliding discharge plasma actuator

    图  5  不同激励电压下的细长体表面压力分布

    Figure  5.  The pressure distribution with different actuation voltages

    图  6  不同激励电压下的等离子体流动控制PIV测量结果

    Figure  6.  PIV measurement plasma flow control results at different actuation voltages

    图  7  不同来流速度下的压力分布对比

    Figure  7.  Comparison of pressure distributions at different wind speeds

    图  8  不同来流速度下的等离子体流动控制PIV测量结果

    Figure  8.  PIV measurement results of plasma flow control with different incoming wind speeds

    表  1  不同激励电压对侧向力控制的影响分析

    Table  1.   Analysis of the influence of different actuation voltages on lateral force control

    Up-p/kVCCΔCCη
    00.64300
    80.6380.0050.78%
    100.5760.06710.42%
    120.4930.15023.33%
    140.3250.31849.46%
    160.1080.53583.20%
    下载: 导出CSV

    表  2  不同来流速度对侧向力控制的影响分析

    Table  2.   The influence of different wind speeds on lateral force control

    uPlasma offPlasma onΔCCη
    100.4540.0750.37983.48%
    150.4710.2150.25654.35%
    200.5030.3560.14729.22%
    25–0.605–0.5690.0365.95%
    下载: 导出CSV
  • [1] 李斌斌,姜裕标,顾蕴松,等. 合成射流大攻角非对称涡控制的试验研究[J]. 航空学报,2015,36(3):764-771. doi: 10.7527/S1000-6893.2014.0184

    LI B B,JIANG Y B,GU Y S,et al. Experimental study of asymmetric vortex control at high angle of attack with synthetic jet[J]. Acta Aeronautica et Astronautica Sinica,2015,36(3):764-771. doi: 10.7527/S1000-6893.2014.0184
    [2] 徐思文,邓学蓥,王延奎. 攻角拉起时前体非对称涡诱导机翼摇滚运动[J]. 北京航空航天大学学报,2015,41(11):2078-2084. doi: 10.13700/j.bh.1001-5965.2014.0707

    XU S W,DENG X Y,WANG Y K. Wing rock motion induced by forebody asymmetric vortices in pitch-up[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(11):2078-2084. doi: 10.13700/j.bh.1001-5965.2014.0707
    [3] WYSOCKI O,SCHÜLEIN E. Experimental investigations on the phantom yaw effect on a maneuvering slender body[J]. Journal of Spacecraft and Rockets,2015,52(1):264-274. doi: 10.2514/1.a32885
    [4] WU G X,DENG X Y,WANG Y K. Effects of tip perturbation on asymmetric vortex flow over slender delta wings[J]. AIAA Journal,2014,52(4):886-891. doi: 10.2514/1.J052589
    [5] BRIDGES D H. Toward a theoretical description of vortex wake asymmetry[J]. Progress in Aerospace Sciences,2010,46(2-3):62-80. doi: 10.1016/j.paerosci.2009.11.005
    [6] 刘沛清,邓学蓥. 大迎角细长体绕流背涡结构与气动特性分析[J]. 力学学报,2002,34(2):248-255. doi: 10.3321/j.issn:0459-1879.2002.02.013

    LIU P Q,DENG X Y. Lee-side vortex structure and aerodynamic characteristics analysis over a slender cylinder at high incidence[J]. Acta Mechanica Sinica,2002,34(2):248-255. doi: 10.3321/j.issn:0459-1879.2002.02.013
    [7] 刘沛清,邓学蓥,孔繁美. 绕细长旋成体非对称涡非定常性的实验研究[J]. 流体力学实验与测量,2002,16(4):39-46. doi: 10.3969/j.issn.1672-9897.2002.04.008

    LIU P Q,DENG X Y,KONG F M. Experimental investigation of asymmetry vortex unsteadiness over slender cylinders[J]. Experiments and Measurements in Fluid Mechanics,2002,16(4):39-46. doi: 10.3969/j.issn.1672-9897.2002.04.008
    [8] 程克明,范召林,尹贵鲁. 大攻角流动非对称性成因与对策[J]. 南京航空航天大学学报,2002,34(1):17-21. doi: 10.3969/j.issn.1005-2615.2002.01.004

    CHENG K M,FAN Z L,YIN G L. On cause and research strategy of flow asymmetry in high-alpha flows[J]. Journal of Nanjing University of Aeronautics & Astronautics,2002,34(1):17-21. doi: 10.3969/j.issn.1005-2615.2002.01.004
    [9] 邓学蓥,石伟,王延奎,等. 两类非对称涡流动所诱导的摇滚运动[J]. 气体物理,2016,1(1):13-24. doi: 10.19527/j.cnki.2096-1642.2016.01.005

    DENG X Y,SHI W,WANG Y K,et al. Wing rock motions induced by two kinds of asymmetric vortices flows[J]. Physics of Gases,2016,1(1):13-24. doi: 10.19527/j.cnki.2096-1642.2016.01.005
    [10] 翟建,张伟伟,王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报,2017,35(3):354-367. doi: 10.7638/kqdlxxb-2017.0018

    ZHAI J,ZHANG W W,WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica,2017,35(3):354-367. doi: 10.7638/kqdlxxb-2017.0018
    [11] 兰子奇,史志伟,孙琪杰,等. AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J]. 实验流体力学,2021,35(2):83-91. doi: 10.11729/syltlx20200095

    LAN Z Q,SHI Z W,SUN Q J,et al. Experimental study on drag reduction of L-shaped bluff body by AC-DBD plasma actuation[J]. Journal of Experiments in Fluid Mechanics,2021,35(2):83-91. doi: 10.11729/syltlx20200095
    [12] WANG J J,CHOI K S,FENG L H,et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences,2013,62:52-78. doi: 10.1016/j.paerosci.2013.05.003
    [13] 孟宣市,郭志鑫,罗时钧,等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报,2010,31(3):500-505.

    MENG X S,GUO Z X,LUO S J,et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica,2010,31(3):500-505.
    [14] MENG X S,LONG Y X,WANG J L,et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators[J]. Physics of Fluids,2018,30(2):024101. doi: 10.1063/1.5005514
    [15] ZHENG B R,WANG Z Y,GAO C,et al. Computational analysis of conical forebody flow at high alpha with transitional model[J]. Journal of Aircraft,2015,52(1):357-366. doi: 10.2514/1.c032469
    [16] 王健磊,孟宣市,李华星,等. 等离子体控制下前体分离涡的研究[J]. 空气动力学学报,2015,33(6):740-746. doi: 10.7638/kqdlxxb-2014.0053

    WANG J L,MENG X S,LI H X,et al. Study on forebody separation vortices using plasma actuations[J]. Acta Aerodynamica Sinica,2015,33(6):740-746. doi: 10.7638/kqdlxxb-2014.0053
    [17] LONG Y X,LI H X,MENG X S,et al. Influence of actuating position on asymmetric vortex control with nanosecond pulse DBD plasma actuators[J]. IEEE Transactions on Plasma Science,2016,44(11):2785-2795. doi: 10.1109/TPS.2016.2583543
    [18] WANG Q T,CHENG K M,GU Y S,et al. Continuous control of asymmetric forebody vortices in a bi-stable state[J]. Physics of Fluids,2018,30(2):024102. doi: 10.1063/1.5000006
    [19] ZHU Y D. Experimental investigations of the asymmetric vortex formation over a slender body of revolution at high angles of attack[J]. International Journal of Modern Physics B,2020,34(14n16):2040089. doi: 10.1142/s0217979220400895
    [20] 周欲晓,顾蕴松. 非零侧滑角大迎角细长体侧向力控制规律实验研究[J]. 空气动力学学报,2014,32(3):383-387. doi: 10.7638/kqdlxxb-2012.0129

    ZHOU Y X,GU Y S. Proportional side force control of slender body at high angles of attack with non-zero sideslip angle[J]. Acta Aerodynamica Sinica,2014,32(3):383-387. doi: 10.7638/kqdlxxb-2012.0129
    [21] KOURTZANIDIS K,RAJA L L. Three-electrode sliding nanosecond dielectric barrier discharge actuator: modeling and physics[J]. AIAA Journal,2017,55(4):1393-1404. doi: 10.2514/1.j055473
    [22] SEKIMOTO S,NONOMURA T,FUJII K. Burst-mode frequency effects of dielectric barrier discharge plasma actuator for separation control[J]. AIAA Journal,2017,55(4):1385-1392. doi: 10.2514/1.j054678
    [23] DONG H,LI Z,GENG X,et al. Study of the airflow induced by a sliding discharge plasma actuator[J]. Modern Physics Letters B,2019,33(2):1950011. doi: 10.1142/s0217984919500118
    [24] ZHENG B R,XUE M,KE X Z,et al. Unsteady vortex structure induced by a trielectrode sliding discharge plasma actuator[J]. AIAA Journal,2018,57(1):467-471. doi: 10.2514/1.J057596
    [25] ZHENG B R,XUE M,GE C. Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators[J]. Chinese Physics B,2020,29(6):064703. doi: 10.1088/1674-1056/ab8372
    [26] FAGLEY C,PORTER C,McLAUGHLIN T. Experimental closed-loop flow control of a von Kármán ogive at high incidence[J]. AIAA Journal,2014,52(12):2891-2898. doi: 10.2514/1.J053012
    [27] 王彦植,陈方,刘洪,等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学,2018,32(3):94-99. doi: 10.11729/syltlx20170160

    WANG Y Z,CHEN F,LIU H,et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):94-99. doi: 10.11729/syltlx20170160
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  35
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 录用日期:  2021-11-09
  • 修回日期:  2021-09-25
  • 网络出版日期:  2022-02-17

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日