留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流向凹曲率壁面湍流边界层的TRPIV实验研究

王轩 范子椰 陈乐天 唐湛棋 姜楠

王轩,范子椰,陈乐天,等. 流向凹曲率壁面湍流边界层的TRPIV实验研究[J]. 实验流体力学,2022,36(6):1-9 doi: 10.11729/syltlx20210084
引用本文: 王轩,范子椰,陈乐天,等. 流向凹曲率壁面湍流边界层的TRPIV实验研究[J]. 实验流体力学,2022,36(6):1-9 doi: 10.11729/syltlx20210084
WANG X,FAN Z Y,CHEN L T,et al. Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):1-9. doi: 10.11729/syltlx20210084
Citation: WANG X,FAN Z Y,CHEN L T,et al. Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):1-9. doi: 10.11729/syltlx20210084

流向凹曲率壁面湍流边界层的TRPIV实验研究

doi: 10.11729/syltlx20210084
基金项目: 国家自然科学基金(11732010,11972251,11872272);中德科学基金国际交流合作项目(GZ1575);工业信息化部高技术船舶项目([2019]360)
详细信息
    作者简介:

    王轩:(1997—),男,天津人,硕士研究生。研究方向:湍流边界层。通信地址:天津市津南区雅观路135号天津大学北洋园校区机械工程学院力学系36教学楼412室(300354)。E-mail:491716766@qq.com

    通讯作者:

    E-mail:nanj@tju.edu.cn

  • 中图分类号: O357.5

Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall

  • 摘要: 带有曲率和压力梯度作用的湍流边界层广泛地存在于各类工程应用中。以带有流向凹曲率的壁面(简称凹壁面)模型为研究对象,利用双相机大小视场的TRPIV系统分别测量了上游和下游两个不同流向位置的瞬时速度场。以光滑平板模型的实验数据为基准,研究了凹壁面上湍流边界层的变化规律。通过对比光滑平板的平均速度剖面和雷诺应力剖面,发现凹壁面情况下的平均速度剖面逐渐偏离了传统对数律,且湍流强度比平板情况下更弱。以$ {\varLambda _{ci}} $准则识别出的顺向涡为条件进行条件相位平均,发现凹壁面中涡上方正脉动的峰值与空间尺度的变化相反,而下方的负脉动比平板情况更强。进一步使用空间两点相关方法提取相干结构,同时利用椭圆拟合的方法计算近壁区相干结构与壁面的倾角,发现凹壁面上相干结构沿流向的空间尺度逐渐增大。结果表明:当湍流边界层受到凹曲率和顺压梯度的共同作用时,近壁附近与尾迹区内湍流强度的差异增大,同时边界层内相干结构的旋涡强度增加;随着向下游的发展,缓冲层附近顺向涡上方正脉动的空间尺度增大,但峰值降低,而在对数律区的上侧则产生了相反的现象;凹壁面湍流边界层内相干结构向更高法向高度迁移的趋势减弱,且相干结构的空间尺度在下游一侧的增长幅度更大。
  • 图  1  实验装置示意图

    Figure  1.  Experimental facility diagram

    图  2  实验测量示意图

    Figure  2.  Schematic diagram of experimental measurements

    图  3  平均速度剖面

    Figure  3.  Mean velocity profile

    图  4  雷诺应力剖面

    Figure  4.  Reynolds stress profile

    图  5  Λci识别结果

    Figure  5.  Λci recognition results

    图  6  大视场λciy*+的变化曲线

    Figure  6.  Variation of λci in boundary layer

    图  7  小视场y*+ ref=30附近顺向涡流向脉动速度的条件平均等值线图

    Figure  7.  Conditional phase-averaged contour of the fluctuation velocity in the direction of the downward vortex near y*+ ref=30 in a small field

    图  8  小视场y*+ ref=80附近顺向涡流向脉动速度的条件平均等值线图

    Figure  8.  Conditional phase-averaged contour of the fluctuation velocity in the direction of the downward vortex near y*+ ref=80 in a small field

    图  9  小视场流向两点相关系数等值线图

    Figure  9.  The contour of two points correlation coefficient in the streamwise direction in the small field

    图  10  大视场流向两点相关系数等值线图

    Figure  10.  The contour of two points correlation coefficient in the streamwise direction in the large field

    表  1  边界层参数

    Table  1.   Boundary layer parameters

    上游(L=2.0 m)下游(L=2.3 m)平板实验
    U/(m·s−10.3160.3280.267
    uτ,large/(m·s−10.0175~0.01800.0196~0.02030.0116
    uτ,small/(m·s−10.01790.02020.0116
    δ99/mm36.8537.2960.16
    Reτ659.6753.3697.9
    K9.03×10−71.68×10−6
    下载: 导出CSV
  • [1] YOU J,BUCHTA D A,ZAKI T A. Concave-wall turbulent boundary layers without and with free-stream turbulence[J]. Journal of Fluid Mechanics,2021,915:A4. doi: 10.1017/jfm.2021.12
    [2] HOLLOWAY A G L,ROACH D C,AKBARY H. Combined effects of favourable pressure gradient and streamline curvature on uniformly sheared turbulence[J]. Journal of Fluid Mechanics,2005,526:303-336. doi: 10.1017/s0022112004003088
    [3] LOPES A S,PIOMELLI U,PALMA J. Large-eddy simula-tion of the flow in an S-duct[J]. Journal of Turbulence,2006,7(11):1-24. doi: 10.1080/14685240500331900
    [4] PATEL V C,SOTIROPOULOS F. Longitudinal curvature effects in turbulent boundary layers[J]. Progress in Aero-space Sciences,1997,33(1-2):1-70. doi: 10.1016/S0376-0421(96)00001-2
    [5] HARUN Z,MONTY J P,MATHIS R,et al. Pressure gradient effects on the large-scale structure of turbulent boundary layers[J]. Journal of Fluid Mechanics,2013,715:477-498. doi: 10.1017/jfm.2012.531
    [6] SPALART P R. Numerical study of sink-flow boundary layers[J]. Journal of Fluid Mechanics,1986,172(1):307-328. doi: 10.1017/s0022112086001751
    [7] AUBERTINE C D,EATON J K. Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient[J]. Journal of Fluid Mechanics,2005,532:345-364. doi: 10.1017/s0022112005004143
    [8] JOSHI P, LIU X F, KATZ J. Turbulence in accelerating boundary layers[C]//Proceedings of ASME/JSME/KSME Joint Fluids Engineering Conference. 2012. doi: 10.1115/AJK2011-25010
    [9] VOLINO R J. Non-equilibrium development in turbulent boundary layers with changing pressure gradients[J]. Journal of Fluid Mechanics,2020,897:A2. doi: 10.1017/jfm.2020.319
    [10] MERONEY R N,BRADSHAW P. Turbulent boundary-layer growth over a longitudinally curved surface[J]. AIAA Journal,1975,13(11):1448-1453. doi: 10.2514/3.7014
    [11] SO R M C,MELLOR G L. Experiment on turbulent boundary layers on a concave wall[J]. Aeronautical Quarterly,1975,26(1):25-40. doi: 10.1017/s0001925900007174
    [12] AROLLA S K,DURBIN P A. LES of spatially developing turbulent boundary layer over a concave surface[J]. Journal of Turbulence,2015,16(1):81-99. doi: 10.1080/14685248.2014.959126
    [13] MATSUBARA K,MUROMOTO T. Two-point correlation and integral scale of spatially advancing curved channel flow at friction-velocity-based Reynolds number 550[J]. Interna-tional Journal of Heat and Fluid Flow,2019,77:31-39. doi: 10.1016/j.ijheatfluidflow.2019.03.003
    [14] SALTAR G,ARAYA G. Reynolds shear stress modeling in turbulent boundary layers subject to very strong favorable pressure gradient[J]. Computers & Fluids,2020,202:104494. doi: 10.1016/j.compfluid.2020.104494
    [15] UZUN A,MALIK M R. Simulation of a turbulent flow subjected to favorable and adverse pressure gradients[J]. Theoretical and Computational Fluid Dynamics,2021,35(3):293-329. doi: 10.1007/s00162-020-00558-4
    [16] COHEN E,GLOERFELT X. Influence of pressure gradients on wall pressure beneath a turbulent boundary layer[J]. Journal of Fluid Mechanics,2018,838:715-758. doi: 10.1017/jfm.2017.898
    [17] VOLCHKOV E P,MAKAROV M S,SAKHNOV A Y. Boundary layer with asymptotic favourable pressure gradient[J]. International Journal of Heat and Mass Transfer,2010,53(13-14):2837-2843. doi: 10.1016/j.ijheatmasstransfer.2010.02.014
    [18] VOLINO R J,SCHULTZ M P. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles[J]. Physical Review Fluids,2018,3(3):034606. doi: 10.1103/physrevfluids.3.034606
    [19] JONES W P,LAUNDER B E. Some properties of sink-flow turbulent boundary layers[J]. Journal of Fluid Mechanics,1972,56(2):337-351. doi: 10.1017/s0022112072002903
    [20] SPALDING D B. A new analytical expression for the drag of a flat plate valid for both the turbulent and laminar regimes[J]. International Journal of Heat and Mass Transfer,1962,5(12):1133-1138. doi: 10.1016/0017-9310(62)90189-8
    [21] WILLERT C E. High-speed particle image velocimetry for the efficient measurement of turbulence statistics[J]. Ex-periments in Fluids,2015,56(1):1-17. doi: 10.1007/s00348-014-1892-4
    [22] 王建杰, 潘翀, 王晋军. 湍流边界层壁面剪切应力的光学测量及统计特性分析[C]//中国力学大会(CCTAM 2019)论文集. 2019.
    [23] NGUYEN T D,WELLS J C,NGUYEN C V. Wall shear stress measurement of near-wall flow over inclined and curved boundaries by stereo interfacial particle image velocimetry[J]. International Journal of Heat and Fluid Flow,2010,31(3):442-449. doi: 10.1016/j.ijheatfluidflow.2009.12.002
    [24] DIXIT S A,RAMESH O N. Large-scale structures in turbulent and reverse-transitional sink flow boundary layers[J]. Journal of Fluid Mechanics,2010,649:233-273. doi: 10.1017/s0022112009993430
    [25] ZHOU J,ADRIAN R J,BALACHANDAR S,et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics,1999,387:353-396. doi: 10.1017/s002211209900467x
    [26] LEHEW J A,GUALA M,McKEON B J. Time-resolved measurements of coherent structures in the turbulent boundary layer[J]. Experiments in Fluids,2013,54(4):1-16. doi: 10.1007/s00348-013-1508-4
    [27] 刘铁峰,王鑫蔚,唐湛棋,等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学,2019,33(3):90-96. doi: 10.11729/syltlx20180101

    LIU T F,WANG X W,TANG Z Q,et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(3):90-96. doi: 10.11729/syltlx20180101
    [28] WU Y,CHRISTENSEN K T. Population trends of spanwise vortices in wall turbulence[J]. Journal of Fluid Mechanics,2006,568:555-76. doi: 10.1017/s002211200600259x
    [29] ADRIAN R J,MEINHART C D,TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics,2000,422:1-54. doi: 10.1017/s0022112000001580
    [30] 苏健,田海平,姜楠. 逆向涡对超疏水壁面减阻影响的TRPIV实验研究[J]. 力学学报,2016,48(5):1033-1039. doi: 10.6052/0459-1879-16-140

    SU J,TIAN H P,JIANG N. Trpiv experimental investi-gation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1033-1039. doi: 10.6052/0459-1879-16-140
    [31] TANG Z Q,WU Y H,JIA Y X,et al. PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element[J]. Flow, Turbulence and Combustion,2018,100(2):365-389. doi: 10.1007/s10494-017-9852-8
    [32] ADRIAN R J. Hairpin vortex organization in wall turbu-lence[J]. Physics of Fluids,2007,19(4):041301. doi: 10.1063/1.2717527
    [33] MARUSIC I. On the role of large-scale structures in wall turbulence[J]. Physics of Fluids,2001,13(3):735-743. doi: 10.1063/1.1343480
    [34] JAISWAL P,MOREAU S,AVALLONE F,et al. On the use of two-point velocity correlation in wall-pressure models for turbulent flow past a trailing edge under adverse pressure gradient[J]. Physics of Fluids,2020,32(10):105105. doi: 10.1063/5.0021121
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  216
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-10-13
  • 录用日期:  2021-11-15
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日