留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴高速撞击低温壁面的动态特性及破碎机理研究

雷基林 李建微 刘懿 苟瑶 刘阳 邓晰文

雷基林,李建微,刘 懿,等. 液滴高速撞击低温壁面的动态特性及破碎机理研究[J]. 实验流体力学,2021,35(X):1-6 doi: 10.11729/syltlx20210066
引用本文: 雷基林,李建微,刘 懿,等. 液滴高速撞击低温壁面的动态特性及破碎机理研究[J]. 实验流体力学,2021,35(X):1-6 doi: 10.11729/syltlx20210066
LEI J L,LI J W,LIU Y,et al. Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed[J]. Journal of Experiments in Fluid Mechanics, 2021,35(X):1-6. doi: 10.11729/syltlx20210066
Citation: LEI J L,LI J W,LIU Y,et al. Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed[J]. Journal of Experiments in Fluid Mechanics, 2021,35(X):1-6. doi: 10.11729/syltlx20210066

液滴高速撞击低温壁面的动态特性及破碎机理研究

doi: 10.11729/syltlx20210066
基金项目: 云南省产业技术领军人才培育项目(YLXL20170076)
详细信息
    作者简介:

    雷基林:(1977-),男,汉族,四川广安人,博士,教授。研究方向:流体流动与传热,结构设计与优化。通信地址:云南省昆明市呈贡区吴家营街道景明南路727号昆明理工大学交通工程学院C座(650500)。E-mail:leijilin@kust.edu.cn

    通讯作者:

    E-mail:lqyi@kust.edu.cn

  • 中图分类号: TQ028.8

Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed

  • 摘要: 为研究液滴撞击低温壁面的动态行为,运用高速阴影法对韦伯数(We)在533~1630之间的单液滴撞击常温壁面(22 ℃)与低温壁面(–30 ℃~–10 ℃)进行可视化试验。试验结果表明:液滴以一定速度撞击低温壁面时会发生即时破碎和冠状破碎,二次液滴飞溅明显;但液滴以相同速度撞击常温壁面时未出现液滴破碎现象。随着壁面温度的降低,液滴撞壁破碎所需韦伯数减小。在壁面温度为–30 ℃时,液滴撞壁破碎的临界韦伯数降低至650左右;当We < 650时,即使壁面温度低于–30 ℃,液滴也不会发生撞壁破碎。当液滴撞击常温壁面时,附壁液膜快速铺展,并且韦伯数越大,附壁液膜铺展和回缩的速度越大,液滴的铺展因子越大。该研究可为液滴撞击低温壁面撞壁模型的建立提供参考。
  • 图  1  试验系统

    Figure  1.  Schematic diagram of experimental set up

    图  2  液滴铺展及破碎过程

    Figure  2.  Droplet spreading and breaking process

    图  3  液滴撞击铝合金板的铺展和破碎临界分布

    Figure  3.  The critical distribution of droplet spreading and breaking when hitting aluminum plate

    图  4  液滴撞击不锈钢板的铺展和破碎临界分布

    Figure  4.  The critical distribution of droplet spreading and breaking when hitting stainless steel plate

    图  5  液滴的反弹与冻结

    Figure  5.  Droplet rebound and freezing

    图  6  不同入射速度对液滴铺展的影响

    Figure  6.  Influence of different impingement velocities on droplet spreading

    图  7  不同壁面材料对液滴撞壁铺展的影响

    Figure  7.  Influence of different wall materials on droplet spreading by impinging on the wall

    图  8  不同壁面温度对液滴撞壁铺展因子的影响

    Figure  8.  Influence of different wall temperature on droplet spreading by impinging on the wall

    表  1  试验用板属性

    Table  1.   Test board properties

    名称材质导热率λ/(W·m–1·K–1规格/mm粗糙度Ra/μm
    铝合金板1050224.00100 × 100 × 10.025
    不锈钢板30416.20100 × 100 × 10.011
    亚克力板PMMA0.19100 × 100 × 20.008
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Experimental conditions

    试验参数数值
    入射液滴直径D/mm2.6 ± 0.1
    入射液滴速度v/(m·s-16.75(高速),5.25(高速),3.84(低速)
    试验平板温度T/(℃)22,–10,–20,–30
    下载: 导出CSV
  • [1] 苑吉河,蒋兴良,易辉,等. 输电线路导线覆冰的国内外研究现状[J]. 高电压技术,2004,30(1):6-9. doi: 10.3969/j.issn.1003-6520.2004.01.003

    YUAN J H,JIANG X L,YI H,et al. The present study on conductor icing of transmission lines[J]. High Voltage Engineering,2004,30(1):6-9. doi: 10.3969/j.issn.1003-6520.2004.01.003
    [2] 隋冬雨,金哲岩,杨志刚. 冷表面上水滴结冰问题的实验研究进展[J]. 制冷学报,2015,36(2):14-20, 40. doi: 10.3969/j.issn.0253-4339.2015.02.003

    SUI D Y,JIN Z Y,YANG Z G. Experimental progress of water droplet freezing on cold surface[J]. Journal of Refrigeration,2015,36(2):14-20, 40. doi: 10.3969/j.issn.0253-4339.2015.02.003
    [3] DALILI N,EDRISY A,CARRIVEAU R. A review of surface engineering issues critical to wind turbine performance[J]. Renewable and Sustainable Energy Reviews,2009,13(2):428-438. doi: 10.1016/j.rser.2007.11.009
    [4] BRAGG M B,BROEREN A P,BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences,2005,41(5):323-362. doi: 10.1016/j.paerosci.2005.07.001
    [5] CALAY R K,HOLDØ A E,MAYMAN P,et al. Experimental simulation of runback ice[J]. Journal of Aircraft,1997,34(2):206-212. doi: 10.2514/2.2173
    [6] PANÃO M R O,MOREIRA A L N. Flow characteristics of spray impingement in PFI injection systems[J]. Experiments in Fluids,2005,39(2):364-374. doi: 10.1007/s00348-005-0996-2
    [7] HORIE K, TAKAHASI H, AKAZAKI S. Emissions reduction during warm-up period by incorporating a wall-wetting fuel model on the fuel injection strategy during engine starting[C]// Proc of the SAE Technical Paper Series. 1995. doi: 10.4271/952478
    [8] 毕菲菲,郭亚丽,沈胜强,等. 液滴撞击固体表面铺展特性的实验研究[J]. 物理学报,2012,61(18):293-298.

    BI F F,GUO Y L,SHEN S Q,et al. Experimental study of spread characteristics of droplet impacting solid surface[J]. Acta Physica Sinica,2012,61(18):293-298.
    [9] KHEDIR K R,KANNARPADY G K,ISHIHARA H,et al. Temperature-dependent bouncing of super-cooled water on teflon-coated superhydrophobic tungsten nanorods[J]. Applied Surface Science,2013,279:76-84. doi: 10.1016/j.apsusc.2013.04.038
    [10] MAITRA T,ANTONINI C,TIWARI M K,et al. Supercooled water drops impacting superhydrophobic textures[J]. Langmuir,2014,30(36):10855-10861. doi: 10.1021/la502675a
    [11] 孙志成,徐静,吴天宇,等. 液滴撞击冷铝表面的冻结沉积特性[J]. 工程热物理学报,2018,39(8):1780-1785.

    SUN Z C,XU J,WU T Y,et al. Freezing mechanism of water droplet impinging on cold aluminum surface[J]. Journal of Engineering Thermophysics,2018,39(8):1780-1785.
    [12] YANG G M,GUO K H,LI N. Freezing mechanism of supercooled water droplet impinging on metal surfaces[J]. International Journal of Refrigeration,2011,34(8):2007-2017. doi: 10.1016/j.ijrefrig.2011.07.001
    [13] 杨宝海,王宏,朱恂,等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报,2012,63(10):3027-3033. doi: 10.3969/j.issn.0438-1157.2012.10.003

    YANG B H,WANG H,ZHU X,et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal,2012,63(10):3027-3033. doi: 10.3969/j.issn.0438-1157.2012.10.003
    [14] 李栋,王鑫,高尚文,等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报,2017,68(6):2473-2482. doi: 10.11949/j.issn.0438-1157.10161518

    LI D,WANG X,GAO S W,et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal,2017,68(6):2473-2482. doi: 10.11949/j.issn.0438-1157.10161518
    [15] 裴毅强,朱庆洋,彭志军,等. 单液滴撞击不同黏度液膜特性研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(9):949-958. doi: 10.11784/tdxbz201809053

    PEI Y Q,ZHU Q Y,PENG Z J,et al. Characteristics of single droplet impact on liquid film with different viscosity[J]. Journal of Tianjin University (Science and Technology),2019,52(9):949-958. doi: 10.11784/tdxbz201809053
    [16] 范瑶,王宏,朱恂,等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报,2016,67(7):2709-2717.

    FAN Y,WANG H,ZHU X,et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading[J]. CIESC Journal,2016,67(7):2709-2717.
    [17] CHEN L Q,XIAO Z Y,CHAN P C H,et al. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf[J]. Applied Surface Science,2011,257(21):8857-8863. doi: 10.1016/j.apsusc.2011.04.094
    [18] 马强,吴晓敏,陈永根. 水平表面结霜过程的实验研究[J]. 化工学报,2015,66(S1):95-99. doi: 10.11949/j.issn.0438-1157.20150324

    MA Q,WU X M,CHEN Y G. Experimental study of frosting on horizontal plate[J]. CIESC Journal,2015,66(S1):95-99. doi: 10.11949/j.issn.0438-1157.20150324
    [19] LV C,HAO P F,ZHANG X W,et al. Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness[J]. Applied Physics Letters,2016,108(14):141602. doi: 10.1063/1.4945662
    [20] 李维仲,朱卫英,权生林,等. 液滴撞击水平固体表面的可视化实验研究[J]. 热科学与技术,2008,7(2):155-160. doi: 10.13738/j.issn.1671-8097.2008.02.004

    LI W Z,ZHU W Y,QUAN S L,et al. Visual experimental study on droplet impacted onto horizontal solid surface[J]. Journal of Thermal Science and Technology,2008,7(2):155-160. doi: 10.13738/j.issn.1671-8097.2008.02.004
    [21] LEE J B,DEROME D,GUYER R,et al. Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces[J]. Langmuir,2016,32(5):1299-1308. doi: 10.1021/acs.langmuir.5b04557
    [22] MAO T,KUHN D C S,TRAN H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal,1997,43(9):2169-2179. doi: 10.1002/aic.690430903
    [23] XU Q,LI Z Y,WANG J,et al. Characteristics of single droplet impact on cold plate surfaces[J]. Drying Technology,2012,30(15):1756-1762. doi: 10.1080/07373937.2012.708001
    [24] MARENGO M,ANTONINI C,ROISMAN I V,et al. Drop collisions with simple and complex surfaces[J]. Current Opinion in Colloid & Interface Science,2011,16(4):292-302. doi: 10.1016/j.cocis.2011.06.009
    [25] 张瑜,宁智,吕明,等. 液滴撞击高温壁面的运动特性[J]. 燃烧科学与技术,2017,23(5):451-457. doi: 10.11715/rskxjs.R2016090003

    ZHANG Y,NING Z,LÜ M,et al. Dynamics of droplet impacting onto heated surface[J]. Journal of Combustion Science and Technology,2017,23(5):451-457. doi: 10.11715/rskxjs.R2016090003
    [26] 胡海豹,何强,余思潇,等. 低温光滑壁面上水滴撞击结冰行为[J]. 物理学报,2016,65(10):196-201. doi: 10.7498/aps.65.104703

    HU H B,HE Q,YU S X,et al. Freezing behavior of droplet impacting on cold surfaces[J]. Acta Physica Sinica,2016,65(10):196-201. doi: 10.7498/aps.65.104703
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-08-18
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日