留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6°攻角尖锥高超声速边界层高频不稳定波实验研究

刘姝怡 陈坚强 袁先旭 熊有德 吴杰

刘姝怡,陈坚强,袁先旭,等. 6°攻角尖锥高超声速边界层高频不稳定波实验研究[J]. 实验流体力学,2021,X(X):1-7 doi: 10.11729/syltlx20210059
引用本文: 刘姝怡,陈坚强,袁先旭,等. 6°攻角尖锥高超声速边界层高频不稳定波实验研究[J]. 实验流体力学,2021,X(X):1-7 doi: 10.11729/syltlx20210059
LIU S Y,CHEN J Q,YUAN X X,et al. Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2021,X(X):1-7. doi: 10.11729/syltlx20210059
Citation: LIU S Y,CHEN J Q,YUAN X X,et al. Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2021,X(X):1-7. doi: 10.11729/syltlx20210059

6°攻角尖锥高超声速边界层高频不稳定波实验研究

doi: 10.11729/syltlx20210059
基金项目: 国家自然科学基金(92052301)
详细信息
    作者简介:

    刘姝怡:(1994-),女,云南宣威人,博士研究生。研究方向:高超声速边界层稳定性实验研究。通信地址:四川省绵阳市空气动力学国家重点实验室(621000)。E-mail:LSYNWPU@126.com

    通讯作者:

    E-mail:chenjq@cardc.cn

  • 中图分类号: O355

Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack

  • 摘要: 边界层转捩对高超声速飞行器的气动力和气动热设计有重要影响。横流失稳通常是三维边界层转捩的主导因素,而在噪声环境下,第二模态不稳定波的影响也不容忽视。为深入理解带攻角情况下高超声速边界层的转捩机理,在Mach 6 Ludwieg管风洞中采用聚焦激光差分干涉仪(Focused Laser Differential Interferometer, FLDI)和高频压力脉动传感器(PCB)对6°攻角下尖锥进行了边界层稳定性实验研究。实验结果显示,在尖锥边界层的不同周向位置存在高频不稳定波。通过功率谱分析和双谱分析,得到该不稳定波沿母线的变化情况以及该高频不稳定波与低频信号(20~40 kHz)之间存在的非线性相互作用。
  • 图  1  PCB安装位置示意图

    Figure  1.  PCB installation position

    图  2  FLDI光路图

    Figure  2.  FLDI optical setup

    图  3  120°方位角处沿尖锥母线的压力脉动功率谱

    Figure  3.  Power spectrum of pressure fluctuation along the generatrix at 120 ° azimuth

    图  4  120°方位角处的双谱分析结果

    Figure  4.  Bispectral analysis results (120°)

    图  5  90°方位角处沿尖锥母线的压力脉动功率谱

    Figure  5.  Power spectrum of pressure fluctuation along the generatrix at 90° azimuth

    图  6  90°方位角处双谱分析结果

    Figure  6.  Bispectral analysis results (90°)

    图  7  不同Re下的压力脉动功率谱

    Figure  7.  Power spectrum of pressure fluctuation with different Reynolds numbers

    图  8  不同Re下的压力脉动幅值沿母线的变化

    Figure  8.  The amplitude of pressure fluctuation along generatrix with different Reynolds numbers

    图  9  边界层内不同高度上的密度脉动功率谱

    Figure  9.  Power spectrum of density fluctuation at different heights in boundary layer

    图  10  激光经过6°攻角尖锥边界层示意图

    Figure  10.  Optical path diagram

  • [1] MACK L M. Boundary layer stability theory[J]. Jet Propulsion Laboratory,1969
    [2] MACK L M. Boundary-layer linear stability theory[C]//Course on Stability and Transition of Laminar Flow. 1984.
    [3] LI F,CHOUDHARI M,CHANG C L,et al. Transition analysis for the ascent phase of HIFiRE-1 flight experiment[J]. Journal of Spacecraft and Rockets,2015,52(5):1283-1293. doi: 10.2514/1.A33258
    [4] LEE C B,CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review,2019,6(1):155-170. doi: 10.1093/nsr/nwy052
    [5] ZHANG C H,TANG Q,LEE C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica,2013,29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [6] 陈坚强,袁先旭,涂国华,等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学,2019,49(11):114701. doi: 10.1360/SSPMA-2019-0071

    CHEN J Q,YUAN X X,TU G H,et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2019,49(11):114701. doi: 10.1360/SSPMA-2019-0071
    [7] STETSON K, KIMMEL R. On hypersonic boundary-layer stability[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-737.
    [8] BERRIDGE D C. Measurements of second-mode instability waves in hypersonic boundary layers with a high-frequency pressure transducer[D]. West Lafayette: Purdue University, 2010.
    [9] EDELMAN J B,SCHNEIDER S P. Secondary instabilities of hypersonic stationary crossflow waves[J]. AIAA Journal,2017,56(1):182-192. doi: 10.2514/1.J056028
    [10] CHOUDHARI M M, LI F, PAREDES P, et al. Nonlinear evolution and breakdown of azimuthally compact crossflow vortex pattern over a yawed cone[C]//Proc of the 2018 AIAA Aerospace Sciences Meeting. 2018. doi: 10.2514/6.2018-1823.
    [11] MOYES A, PAREDES P, KOCIAN T S, et al. Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-0848.
    [12] KOCIAN T S, MOYES A, MULLEN C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry[C]//Proc of the 46th AIAA Fluid Dynamics Conference. 2016. doi: 10.2514/6.2016-3346.
    [13] LI F,CHOUDHARI M,PAREDES P,et al. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer[J]. Physical Review Fluids,2016,1(5):053603. doi: 10.1103/physrevfluids.1.053603
    [14] CRAIG S A,SARIC W S. Crossflow instability on a yawed cone at Mach 6[J]. Procedia IUTAM,2015,14:15-25. doi: 10.1016/j.piutam.2015.03.019
    [15] KOCIAN T S,MOYES A J,REED H L,et al. Hypersonic crossflow instability[J]. Journal of Spacecraft and Rockets,2019,56(2):432-446. doi: 10.2514/1.a34289
    [16] WARD C, HENDERSON R, SCHNEIDER S P. Secondary instability of stationary crossflow vortices on an inclined cone at Mach 6[C]//Proc of the 45th AIAA Fluid Dynamics Conference, Dallas, TX. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-2773.
    [17] WARD C, HENDERSON R, SCHNEIDER S P. Secondary instability of stationary crossflow vortices on an inclined cone at Mach 6[C]//Proc of the 45th AIAA Fluid Dynamics Conference. 2015. doi: 10.2514/6.2015-2773.
    [18] BORG M P,KIMMEL R L,STANFIELD S. Traveling crossflow instability for the HIFiRE-5 elliptic cone[J]. Journal of Spacecraft and Rockets,2015,52(3):664-673. doi: 10.2514/1.A33145
    [19] BORG M P, KIMMEL R L. Simultaneous infrared and pressure measurements of crossflow instability modes for HIFiRE-5[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-0354.
    [20] BORG M P, KIMMEL R L. Ground test measurements of boundary-layer instabilities and transition for HIFiRE-5 at flight-relevant attitudes[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-3135.
    [21] GROOT K J,SERPIERI J,PINNA F,et al. Secondary crossflow instability through global analysis of measured base flows[J]. Journal of Fluid Mechanics,2018,846:605-653. doi: 10.1017/jfm.2018.253
    [22] PARZIALE N J,SHEPHERD J E,HORNUNG H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal,2013,51(3):750-754. doi: 10.2514/1.J052013
    [23] PARZIALE N J,SHEPHERD J E,HORNUNG H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Mechanics,2015,781:87-112. doi: 10.1017/jfm.2015.489
    [24] 余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75.

    YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75
    [25] XIONG Y D,YU T,LIN L Q,et al. Nonlinear instability characterization of hypersonic laminar boundary layer[J]. AIAA Journal,2020,58(12):5254-5263. doi: 10.2514/1.J059263
    [26] YU T,DE XIONG Y,ZHAO J Q,et al. Application of focused laser differential interferometer to hypersonic boundary-layer instability study[J]. Chinese Journal of Aeronautics,2021,34(5):17-26. doi: 10.1016/j.cja.2020.10.019
    [27] CRAIG S A,HUMBLE R A,HOFFERTH J W,et al. Nonlinear behaviour of the Mack mode in a hypersonic boundary layer[J]. Journal of Fluid Mechanics,2019,872:74-99. doi: 10.1017/jfm.2019.359
    [28] LI F, CHOUDHARI M, CHANG C L, et al. Analysis of instabilities in non-axisymmetric hypersonic boundary layers over cones[C]//Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4643.
  • 加载中
图(10)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日